この論文をさがす

説明

Active systems exhibit spontaneous flows induced by self-propulsion of microscopic constituents and can reach a nonequilibrium steady state without an external drive. Constructing the analogy between the quantum anomalous Hall insulators and active matter with spontaneous flows, we show that topologically protected sound modes can arise in a steady-state active system in continuum space. We point out that the net vorticity of the steady-state flow, which acts as a counterpart of the gauge field in condensed-matter settings, must vanish under realistic conditions for active systems. The quantum anomalous Hall effect thus provides design principles for realizing topological metamaterials. We propose and analyze the concrete minimal model and numerically calculate its band structure and eigenvectors, demonstrating the emergence of nonzero bulk topological invariants with the corresponding edge sound modes. This new type of topological active systems can potentially expand possibilities for their experimental realizations and may have broad applications to practical active metamaterials. Possible realization of non-Hermitian topological phenomena in active systems is also discussed.

6+5 pages, 4+4 figures, to appear in PRL, see also supplementary movie published with the manuscript

収録刊行物

被引用文献 (14)*注記

もっと見る

参考文献 (64)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ