Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon

  • David E. Woon
    Molecular Science Research Center, Pacific Northwest Laboratory, Box 999, Richland, Washington 99352
  • Thom H. Dunning
    Molecular Science Research Center, Pacific Northwest Laboratory, Box 999, Richland, Washington 99352

抄録

<jats:p>Correlation consistent and augmented correlation consistent basis sets have been determined for the second row atoms aluminum through argon. The methodology, originally developed for the first row atoms [T. H. Dunning, Jr., J. Chem. Phys. 90, (1989)] is first applied to sulfur. The exponents for the polarization functions (dfgh) are systematically optimized for a correlated wave function (HF+1+2). The (sp) correlation functions are taken from the appropriate HF primitive sets; it is shown that these functions differ little from the optimum functions. Basis sets of double zeta [4s3p1d], triple zeta [5s4p2d1f], and quadruple zeta [6s5p3d2f1g] quality are defined. Each of these sets is then augmented with diffuse functions to better describe electron affinities and other molecular properties: s and p functions were obtained by optimization for the anion HF energy, while an additional polarization function for each symmetry present in the standard set was optimized for the anion HF+1+2 energy. The results for sulfur are then used to assist in determining double zeta, triple zeta, and quadruple zeta basis sets for the remainder of the second row of the p block.</jats:p>

収録刊行物

被引用文献 (180)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ