Assessment of First‐Principles and Semiempirical Methodologies for Absorption and Emission Energies of Ce<sup>3+</sup>‐Doped Luminescent Materials

  • Yongchao Jia
    Institute of Condensed Matter and Nanosciences Université catholique de Louvain (UCL) Chemin des étoiles 8, bte L07.03.01 B‐1348 Louvain‐La‐Neuve Belgium
  • Samuel Poncé
    Department of Materials University of Oxford Parks Road Oxford OX1 3PH UK
  • Anna Miglio
    Institute of Condensed Matter and Nanosciences Université catholique de Louvain (UCL) Chemin des étoiles 8, bte L07.03.01 B‐1348 Louvain‐La‐Neuve Belgium
  • Masayoshi Mikami
    MCHC R&D Synergy Centre Inc. 1000 Kamoshida‐cho Aoba‐ku Yokohama 227 8502 Japan
  • Xavier Gonze
    Institute of Condensed Matter and Nanosciences Université catholique de Louvain (UCL) Chemin des étoiles 8, bte L07.03.01 B‐1348 Louvain‐La‐Neuve Belgium

抄録

<jats:p>In search of a reliable methodology for the prediction of light absorption and emission of Ce<jats:sup>3+</jats:sup>‐doped luminescent materials, 13 representative materials are studied with first‐principles and semiempirical approaches. In the first‐principles approach, that combines constrained density‐functional theory and ∆SCF, the atomic positions are obtained for both ground and excited states of the Ce<jats:sup>3+</jats:sup> ion. The structural information is fed into Dorenbos' semiempirical model. Absorption and emission energies are calculated with both methods and compared with experiment. The first‐principles approach matches experiment within 0.3 eV, with two exceptions at 0.5 eV. In contrast, the semiempirical approach does not perform as well (usually more than 0.5 eV error). The general applicability of the present first‐principles scheme, with an encouraging predictive power, opens a novel avenue for crystal site engineering and high‐throughput search for new phosphors and scintillators.</jats:p>

収録刊行物

被引用文献 (3)*注記

もっと見る

問題の指摘

ページトップへ