Comparative Transcriptional Profiling of Two Contrasting Rice Genotypes under Salinity Stress during the Vegetative Growth Stage

  • Harkamal Walia
    Department of Botany and Plant Sciences (H.W., P.C., S.I.W., J.M., T.J.C.) and Department of Statistics (J.X., X.C.), University of California, Riverside, California 92521; United States Department of Agriculture Agricultural Research Service, George E. Brown, Jr., Salinity Laboratory, Riverside, California 92507 (C.W., X.L.); International Rice Research Institute, Manila, The Philippines (A.M.I.
  • Clyde Wilson
    Department of Botany and Plant Sciences (H.W., P.C., S.I.W., J.M., T.J.C.) and Department of Statistics (J.X., X.C.), University of California, Riverside, California 92521; United States Department of Agriculture Agricultural Research Service, George E. Brown, Jr., Salinity Laboratory, Riverside, California 92507 (C.W., X.L.); International Rice Research Institute, Manila, The Philippines (A.M.I.
  • Pascal Condamine
    Department of Botany and Plant Sciences (H.W., P.C., S.I.W., J.M., T.J.C.) and Department of Statistics (J.X., X.C.), University of California, Riverside, California 92521; United States Department of Agriculture Agricultural Research Service, George E. Brown, Jr., Salinity Laboratory, Riverside, California 92507 (C.W., X.L.); International Rice Research Institute, Manila, The Philippines (A.M.I.
  • Xuan Liu
    Department of Botany and Plant Sciences (H.W., P.C., S.I.W., J.M., T.J.C.) and Department of Statistics (J.X., X.C.), University of California, Riverside, California 92521; United States Department of Agriculture Agricultural Research Service, George E. Brown, Jr., Salinity Laboratory, Riverside, California 92507 (C.W., X.L.); International Rice Research Institute, Manila, The Philippines (A.M.I.
  • Abdelbagi M. Ismail
    Department of Botany and Plant Sciences (H.W., P.C., S.I.W., J.M., T.J.C.) and Department of Statistics (J.X., X.C.), University of California, Riverside, California 92521; United States Department of Agriculture Agricultural Research Service, George E. Brown, Jr., Salinity Laboratory, Riverside, California 92507 (C.W., X.L.); International Rice Research Institute, Manila, The Philippines (A.M.I.
  • Linghe Zeng
    Department of Botany and Plant Sciences (H.W., P.C., S.I.W., J.M., T.J.C.) and Department of Statistics (J.X., X.C.), University of California, Riverside, California 92521; United States Department of Agriculture Agricultural Research Service, George E. Brown, Jr., Salinity Laboratory, Riverside, California 92507 (C.W., X.L.); International Rice Research Institute, Manila, The Philippines (A.M.I.
  • Steve I. Wanamaker
    Department of Botany and Plant Sciences (H.W., P.C., S.I.W., J.M., T.J.C.) and Department of Statistics (J.X., X.C.), University of California, Riverside, California 92521; United States Department of Agriculture Agricultural Research Service, George E. Brown, Jr., Salinity Laboratory, Riverside, California 92507 (C.W., X.L.); International Rice Research Institute, Manila, The Philippines (A.M.I.
  • Jayati Mandal
    Department of Botany and Plant Sciences (H.W., P.C., S.I.W., J.M., T.J.C.) and Department of Statistics (J.X., X.C.), University of California, Riverside, California 92521; United States Department of Agriculture Agricultural Research Service, George E. Brown, Jr., Salinity Laboratory, Riverside, California 92507 (C.W., X.L.); International Rice Research Institute, Manila, The Philippines (A.M.I.
  • Jin Xu
    Department of Botany and Plant Sciences (H.W., P.C., S.I.W., J.M., T.J.C.) and Department of Statistics (J.X., X.C.), University of California, Riverside, California 92521; United States Department of Agriculture Agricultural Research Service, George E. Brown, Jr., Salinity Laboratory, Riverside, California 92507 (C.W., X.L.); International Rice Research Institute, Manila, The Philippines (A.M.I.
  • Xinping Cui
    Department of Botany and Plant Sciences (H.W., P.C., S.I.W., J.M., T.J.C.) and Department of Statistics (J.X., X.C.), University of California, Riverside, California 92521; United States Department of Agriculture Agricultural Research Service, George E. Brown, Jr., Salinity Laboratory, Riverside, California 92507 (C.W., X.L.); International Rice Research Institute, Manila, The Philippines (A.M.I.
  • Timothy J. Close
    Department of Botany and Plant Sciences (H.W., P.C., S.I.W., J.M., T.J.C.) and Department of Statistics (J.X., X.C.), University of California, Riverside, California 92521; United States Department of Agriculture Agricultural Research Service, George E. Brown, Jr., Salinity Laboratory, Riverside, California 92507 (C.W., X.L.); International Rice Research Institute, Manila, The Philippines (A.M.I.

Description

<jats:title>Abstract</jats:title> <jats:p>Rice (Oryza sativa), a salt-sensitive species, has considerable genetic variation for salt tolerance within the cultivated gene pool. Two indica rice genotypes, FL478, a recombinant inbred line derived from a population developed for salinity tolerance studies, and IR29, the sensitive parent of the population, were selected for this study. We used the Affymetrix rice genome array containing 55,515 probe sets to explore the transcriptome of the salt-tolerant and salt-sensitive genotypes under control and salinity-stressed conditions during vegetative growth. Response of the sensitive genotype IR29 is characterized by induction of a relatively large number of probe sets compared to tolerant FL478. Salinity stress induced a number of genes involved in the flavonoid biosynthesis pathway in IR29 but not in FL478. Cell wall-related genes were responsive in both genotypes, suggesting cell wall restructuring is a general adaptive mechanism during salinity stress, although the two genotypes also had some differences. Additionally, the expression of genes mapping to the Saltol region of chromosome 1 were examined in both genotypes. Single-feature polymorphism analysis of expression data revealed that IR29 was the source of the Saltol region in FL478, contrary to expectation. This study provides a genome-wide transcriptional analysis of two well-characterized, genetically related rice genotypes differing in salinity tolerance during a gradually imposed salinity stress under greenhouse conditions.</jats:p>

Journal

  • Plant Physiology

    Plant Physiology 139 (2), 822-835, 2005-09-23

    Oxford University Press (OUP)

Citations (6)*help

See more

Details 詳細情報について

Report a problem

Back to top