Gauge ambiguities imply Jaynes-Cummings physics remains valid in ultrastrong coupling QED

説明

<jats:title>Abstract</jats:title><jats:p>Ultrastrong-coupling between two-level systems and radiation is important for both fundamental and applied quantum electrodynamics (QED). Such regimes are identified by the breakdown of the rotating-wave approximation, which applied to the quantum Rabi model (QRM) yields the apparently less fundamental Jaynes-Cummings model (JCM). We show that when truncating the material system to two levels, each gauge gives a different description whose predictions vary significantly for ultrastrong-coupling. QRMs are obtained through specific gauge choices, but so too is a JCM without needing the rotating-wave approximation. Analysing a circuit QED setup, we find that this JCM provides more accurate predictions than the QRM for the ground state, and often for the first excited state as well. Thus, Jaynes-Cummings physics is not restricted to light-matter coupling below the ultrastrong limit. Among the many implications is that the system’s ground state is not necessarily highly entangled, which is usually considered a hallmark of ultrastrong-coupling.</jats:p>

収録刊行物

  • Nature Communications

    Nature Communications 10 (1), 1-, 2019-01-30

    Springer Science and Business Media LLC

被引用文献 (9)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ