Mesoporous Silica Nanoparticles for Targeted and Stimuli‐Responsive Delivery of Chemotherapeutics: A Review

  • Antti Rahikkala
    Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki FI‐00014 Helsinki Finland
  • Sarah A. P. Pereira
    LAQV REQUIMTE Departamento de Ciências Químicas Faculdade de Farmácia Universidade do Porto 4050‐313 Porto Portugal
  • Patrícia Figueiredo
    Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki FI‐00014 Helsinki Finland
  • Marieta L. C. Passos
    LAQV REQUIMTE Departamento de Ciências Químicas Faculdade de Farmácia Universidade do Porto 4050‐313 Porto Portugal
  • André R. T. S. Araújo
    LAQV REQUIMTE Departamento de Ciências Químicas Faculdade de Farmácia Universidade do Porto 4050‐313 Porto Portugal
  • M. Lúcia M. F. S. Saraiva
    LAQV REQUIMTE Departamento de Ciências Químicas Faculdade de Farmácia Universidade do Porto 4050‐313 Porto Portugal
  • Hélder A. Santos
    Drug Research Program Division of Pharmaceutical Chemistry and Technology Faculty of Pharmacy University of Helsinki FI‐00014 Helsinki Finland

説明

<jats:title>Abstract</jats:title><jats:p>Mesoporous silica nanoparticles (MSNs) exhibit the typical characteristics of inorganic materials that make them promising drug delivery carriers for cancer therapy. Their structural properties allow the targeted delivery of chemotherapeutic drugs to enhance drug efficacy and reduce adverse effects. The functionalization of MSNs with targeting ligands to a specific tissue/cell and stimuli‐responsive capping materials to seal drugs inside the MSNs pores are widely studied for biomedical and pharmaceutical applications. Furthermore, multiple stimuli‐responsive MSN‐based drug delivery systems are developed to enhance the delivery of anticancer drugs to their specific target and thereby improve the release of the drugs at the intended site. In addition, several toxicity studies are conducted to evaluate the biosafety and biocompatibility of MSNs. Although MSNs present reduced toxicity compared to colloidal silica, they can induce cytotoxicity associated with oxidative stress by increased reactive oxygen species production and decreased glutathione levels that can ultimately lead to cell death. However, different modifications to control morphology and surface composition can be applied to overcome the biocompatibility concerns. In this review, a comprehensive overview of the controlled synthesis, functionalization, targeting and biocompatibility of MSNs, as well as their biomedical application as a chemotherapeutic delivery system is provided.</jats:p>

収録刊行物

被引用文献 (3)*注記

もっと見る

問題の指摘

ページトップへ