-
- Xiaoxing Zhang
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Shanghai Center for Brain Science and Brain-Inspired Technology, Chinese Academy of Sciences, Shanghai, China
-
- Wenjun Yan
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Shanghai Center for Brain Science and Brain-Inspired Technology, Chinese Academy of Sciences, Shanghai, China
-
- Wenliang Wang
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Shanghai Center for Brain Science and Brain-Inspired Technology, Chinese Academy of Sciences, Shanghai, China
-
- Hongmei Fan
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Shanghai Center for Brain Science and Brain-Inspired Technology, Chinese Academy of Sciences, Shanghai, China
-
- Ruiqing Hou
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Shanghai Center for Brain Science and Brain-Inspired Technology, Chinese Academy of Sciences, Shanghai, China
-
- Yulei Chen
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Shanghai Center for Brain Science and Brain-Inspired Technology, Chinese Academy of Sciences, Shanghai, China
-
- Zhaoqin Chen
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Shanghai Center for Brain Science and Brain-Inspired Technology, Chinese Academy of Sciences, Shanghai, China
-
- Chaofan Ge
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Shanghai Center for Brain Science and Brain-Inspired Technology, Chinese Academy of Sciences, Shanghai, China
-
- Shumin Duan
- Key Laboratory of Medical Neurobiology of Ministry of Health of China, Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, China
-
- Albert Compte
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
-
- Chengyu T Li
- State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Shanghai Center for Brain Science and Brain-Inspired Technology, Chinese Academy of Sciences, Shanghai, China
説明
<jats:p>Working memory is a critical brain function for maintaining and manipulating information over delay periods of seconds. It is debated whether delay-period neural activity in sensory regions is important for the active maintenance of information during the delay period. Here, we tackle this question by examining the anterior piriform cortex (APC), an olfactory sensory cortex, in head-fixed mice performing several olfactory working memory tasks. Active information maintenance is necessary in these tasks, especially in a dual-task paradigm in which mice are required to perform another distracting task while actively maintaining information during the delay period. Optogenetic suppression of neuronal activity in APC during the delay period impaired performance in all the tasks. Furthermore, electrophysiological recordings revealed that APC neuronal populations encoded odor information in the delay period even with an intervening distracting task. Thus, delay activity in APC is important for active information maintenance in olfactory working memory.</jats:p>
収録刊行物
-
- eLife
-
eLife 8 2019-06-24
eLife Sciences Publications, Ltd