Model Tests for a Floating Wind Turbine on Three Different Floaters

  • Bonjun J. Koo
    Technip USA, Inc., 11700 Katy Freeway, Suite 150, Houston, TX 77079 e-mail:
  • Andrew J. Goupee
    Advanced Structures and Composites Center, University of Maine, 35 Flagstaff Road, Orono, ME 04469
  • Richard W. Kimball
    Maine Maritime Academy, 54 Pleasant Street, Castine, ME 04420
  • Kostas F. Lambrakos
    Technip USA, Inc., 11700 Katy Freeway, Suite 150, Houston, TX 77079

抄録

<jats:p>Wind energy is a promising alternate energy resource. However, the on-land wind farms are limited by space, noise, and visual pollution and, therefore, many countries build wind farms near the shore. Until now, most offshore wind farms have been built in relatively shallow water (less than 30 m) with fixed tower type wind turbines. Recently, several countries have planned to move wind farms to deep water offshore locations to find stronger and steadier wind fields as compared to near shore locations. For the wind farms in deeper water, floating platforms have been proposed to support the wind turbine. The model tests described in this paper were performed at MARIN (maritime research institute netherlands) with a model setup corresponding to a 1:50 Froude scaling. The wind turbine was a scaled model of the national renewable energy lab (NREL) 5 MW horizontal axis reference wind turbine supported by three different generic floating platforms: a spar, a semisubmersible, and a tension-leg platform (TLP). The wave environment used in the tests is representative of the offshore in the state of Maine. In order to capture coupling between the floating platform and the wind turbine, the 1st bending mode of the turbine tower was also modeled. The main purpose of the model tests was to generate data on coupled motions and loads between the three floating platforms and the same wind turbine for the operational, design, and survival seas states. The data are to be used for the calibration and improvement of the existing design analysis and performance numerical codes. An additional objective of the model tests was to establish the advantages and disadvantages among the three floating platform concepts on the basis of the test data. The paper gives details of the scaled model wind turbine and floating platforms, the setup configurations, and the instrumentation to measure motions, accelerations, and loads along with the wind turbine rpm, torque, and thrust for the three floating wind turbines. The data and data analysis results are discussed in the work of Goupee et al. (2012, “Experimental Comparison of Three Floating Wind Turbine Concepts,” OMAE 2012-83645).</jats:p>

収録刊行物

被引用文献 (1)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ