Muscle synergy patterns as physiological markers of motor cortical damage

  • Vincent C. K. Cheung
    McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139;
  • Andrea Turolla
    Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Ospedale San Camillo, 30126 Lido di Venezia, Italy; and
  • Michela Agostini
    Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Ospedale San Camillo, 30126 Lido di Venezia, Italy; and
  • Stefano Silvoni
    Istituto di Ricovero e Cura a Carattere Scientifico Fondazione Ospedale San Camillo, 30126 Lido di Venezia, Italy; and
  • Caoimhe Bennis
    Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02114
  • Patrick Kasi
    Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02114
  • Sabrina Paganoni
    Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02114
  • Paolo Bonato
    Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA 02114
  • Emilio Bizzi
    McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139;

説明

<jats:p>The experimental findings herein reported are aimed at gaining a perspective on the complex neural events that follow lesions of the motor cortical areas. Cortical damage, whether by trauma or stroke, interferes with the flow of descending signals to the modular interneuronal structures of the spinal cord. These spinal modules subserve normal motor behaviors by activating groups of muscles as individual units (muscle synergies). Damage to the motor cortical areas disrupts the orchestration of the modules, resulting in abnormal movements. To gain insights into this complex process, we recorded myoelectric signals from multiple upper-limb muscles in subjects with cortical lesions. We used a factorization algorithm to identify the muscle synergies. Our factorization analysis revealed, in a quantitative way, three distinct patterns of muscle coordination—including preservation, merging, and fractionation of muscle synergies—that reflect the multiple neural responses that occur after cortical damage. These patterns varied as a function of both the severity of functional impairment and the temporal distance from stroke onset. We think these muscle-synergy patterns can be used as physiological markers of the status of any patient with stroke or trauma, thereby guiding the development of different rehabilitation approaches, as well as future physiological experiments for a further understanding of postinjury mechanisms of motor control and recovery.</jats:p>

収録刊行物

被引用文献 (44)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ