Defective <scp>NOD</scp>2 peptidoglycan sensing promotes diet‐induced inflammation, dysbiosis, and insulin resistance

  • Emmanuel Denou
    Department of Biochemistry and Biomedical Sciences McMaster University Hamilton ON Canada
  • Karine Lolmède
    Institut National de la Santé et de la Recherche Médicale (INSERM) Toulouse France
  • Lucile Garidou
    Institut National de la Santé et de la Recherche Médicale (INSERM) Toulouse France
  • Celine Pomie
    Institut National de la Santé et de la Recherche Médicale (INSERM) Toulouse France
  • Chantal Chabo
    Institut National de la Santé et de la Recherche Médicale (INSERM) Toulouse France
  • Trevor C Lau
    Department of Biochemistry and Biomedical Sciences McMaster University Hamilton ON Canada
  • Morgan D Fullerton
    Department of Biochemistry and Biomedical Sciences McMaster University Hamilton ON Canada
  • Giulia Nigro
    Unité de Pathogénie Microbienne Moléculaire and Unité INSERM 786 Institut Pasteur Paris France
  • Alexia Zakaroff‐Girard
    Institut National de la Santé et de la Recherche Médicale (INSERM) Toulouse France
  • Elodie Luche
    Institut National de la Santé et de la Recherche Médicale (INSERM) Toulouse France
  • Céline Garret
    Institut National de la Santé et de la Recherche Médicale (INSERM) Toulouse France
  • Matteo Serino
    Institut National de la Santé et de la Recherche Médicale (INSERM) Toulouse France
  • Jacques Amar
    Institut National de la Santé et de la Recherche Médicale (INSERM) Toulouse France
  • Michael Courtney
    VAIOMER SAS Prologue Biotech Labège France
  • Joseph F Cavallari
    Department of Biochemistry and Biomedical Sciences McMaster University Hamilton ON Canada
  • Brandyn D Henriksbo
    Department of Biochemistry and Biomedical Sciences McMaster University Hamilton ON Canada
  • Nicole G Barra
    Department of Pathology and Molecular Medicine McMaster University Hamilton ON Canada
  • Kevin P Foley
    Department of Biochemistry and Biomedical Sciences McMaster University Hamilton ON Canada
  • Joseph B McPhee
    Department of Biochemistry and Biomedical Sciences McMaster University Hamilton ON Canada
  • Brittany M Duggan
    Department of Biochemistry and Biomedical Sciences McMaster University Hamilton ON Canada
  • Hayley M O'Neill
    Department of Medicine McMaster University Hamilton ON Canada
  • Amanda J Lee
    Department of Pathology and Molecular Medicine McMaster University Hamilton ON Canada
  • Philippe Sansonetti
    Unité de Pathogénie Microbienne Moléculaire and Unité INSERM 786 Institut Pasteur Paris France
  • Ali A Ashkar
    Department of Pathology and Molecular Medicine McMaster University Hamilton ON Canada
  • Waliul I Khan
    Department of Pathology and Molecular Medicine McMaster University Hamilton ON Canada
  • Michael G Surette
    Department of Medicine McMaster University Hamilton ON Canada
  • Anne Bouloumié
    Institut National de la Santé et de la Recherche Médicale (INSERM) Toulouse France
  • Gregory R Steinberg
    Department of Medicine McMaster University Hamilton ON Canada
  • Rémy Burcelin
    Institut National de la Santé et de la Recherche Médicale (INSERM) Toulouse France
  • Jonathan D Schertzer
    Department of Biochemistry and Biomedical Sciences McMaster University Hamilton ON Canada

Description

<jats:title>Abstract</jats:title><jats:p>Pattern recognition receptors link metabolite and bacteria‐derived inflammation to insulin resistance during obesity. We demonstrate that <jats:styled-content style="fixed-case">NOD</jats:styled-content>2 detection of bacterial cell wall peptidoglycan (<jats:styled-content style="fixed-case">PGN</jats:styled-content>) regulates metabolic inflammation and insulin sensitivity. An obesity‐promoting high‐fat diet (<jats:styled-content style="fixed-case">HFD</jats:styled-content>) increased <jats:styled-content style="fixed-case">NOD</jats:styled-content>2 in hepatocytes and adipocytes, and <jats:styled-content style="fixed-case">NOD</jats:styled-content>2<jats:sup>−/−</jats:sup> mice have increased adipose tissue and liver inflammation and exacerbated insulin resistance during a <jats:styled-content style="fixed-case">HFD</jats:styled-content>. This effect is independent of altered adiposity or <jats:styled-content style="fixed-case">NOD</jats:styled-content>2 in hematopoietic‐derived immune cells. Instead, increased metabolic inflammation and insulin resistance in <jats:styled-content style="fixed-case">NOD</jats:styled-content>2<jats:sup>−/−</jats:sup> mice is associated with increased commensal bacterial translocation from the gut into adipose tissue and liver. An intact <jats:styled-content style="fixed-case">PGN</jats:styled-content>‐<jats:styled-content style="fixed-case">NOD</jats:styled-content>2 sensing system regulated gut mucosal bacterial colonization and a metabolic tissue dysbiosis that is a potential trigger for increased metabolic inflammation and insulin resistance. Gut dysbiosis in <jats:styled-content style="fixed-case">HFD</jats:styled-content>‐fed <jats:styled-content style="fixed-case">NOD</jats:styled-content>2<jats:sup>−/−</jats:sup> mice is an independent and transmissible factor that contributes to metabolic inflammation and insulin resistance when transferred to <jats:styled-content style="fixed-case">WT</jats:styled-content>, germ‐free mice. These findings warrant scrutiny of bacterial component detection, dysbiosis, and protective immune responses in the links between inflammatory gut and metabolic diseases, including diabetes.</jats:p>

Journal

  • EMBO Molecular Medicine

    EMBO Molecular Medicine 7 (3), 259-274, 2015-02-09

    Springer Science and Business Media LLC

Citations (1)*help

See more

Report a problem

Back to top