-
- Paul Bourgade
- Laboratoire de probabilités et modèles aléatoires, université Paris 6
-
- Takahiko Fujita
- Graduate School of Commerce and management, Hitotsubashi University
-
- Marc Yor
- Laboratoire de probabilités et modèles aléatoires, université Paris 6
この論文をさがす
説明
We show how to recover Euler's formula for $\zeta(2n)$, as well as $L_{\chi_4}(2n+1)$, for any integer $n$, from the knowledge of the density of the product $\mathbb{C}_1,\mathbb{C}_2\ldots,\mathbb{C}_k$, for any $k\geq 1$, where the $\mathbb{C}_i$'s are independent standard Cauchy variables.
収録刊行物
-
- Electronic Communications in Probability
-
Electronic Communications in Probability 12 (none), 2007-01-01
Institute of Mathematical Statistics