A Female Ligamentous Cervical Spine Finite Element Model Validated for Physiological Loads

  • Jonas Östh
    Department of Applied Mechanics, Chalmers University of Technology, Gothenburg SE-412 96, Sweden e-mail:
  • Karin Brolin
    Department of Applied Mechanics, Chalmers University of Technology, Gothenburg SE-412 96, Sweden e-mail:
  • Mats Y. Svensson
    Department of Applied Mechanics, Chalmers University of Technology, Gothenburg SE-412 96, Sweden e-mail:
  • Astrid Linder
    Statens väg-och Transportforskningsinstitut (VTI), Gothenburg SE-402 78, Sweden e-mail:

説明

<jats:p>Mathematical cervical spine models allow for studying of impact loading that can cause whiplash associated disorders (WAD). However, existing models only cover the male anthropometry, despite the female population being at a higher risk of sustaining WAD in automotive rear-end impacts. The aim of this study is to develop and validate a ligamentous cervical spine intended for biomechanical research on the effect of automotive impacts. A female model has the potential to aid the design of better protection systems as well as improve understanding of injury mechanisms causing WAD. A finite element (FE) mesh was created from surface data of the cervical vertebrae of a 26-year old female (stature 167 cm, weight 59 kg). Soft tissues were generated from the skeletal geometry and anatomical literature descriptions. Ligaments were modeled with nonlinear elastic orthotropic membrane elements, intervertebral disks as composites of nonlinear elastic bulk elements, and orthotropic anulus fibrosus fiber layers, while cortical and trabecular bones were modeled as isotropic plastic–elastic. The model has geometrical features representative of the female cervical spine—the largest average difference compared with published anthropometric female data was the vertebral body depth being 3.4% shorter for the model. The majority the cervical segments compare well with respect to biomechanical data at physiological loads, with the best match for flexion–extension loads and less biofidelity for axial rotation. An average female FE ligamentous cervical spine model was developed and validated with respect to physiological loading. In flexion–extension simulations with the developed female model and an existing average male cervical spine model, a greater range of motion (ROM) was found in the female model.</jats:p>

収録刊行物

被引用文献 (1)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ