Semiconductor Quantum Dots: An Emerging Candidate for CO<sub>2</sub> Photoreduction

  • Hao‐Lin Wu
    Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
  • Xu‐Bing Li
    Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
  • Chen‐Ho Tung
    Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
  • Li‐Zhu Wu
    Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China

説明

<jats:title>Abstract</jats:title><jats:p>As one of the most critical approaches to resolve the energy crisis and environmental concerns, carbon dioxide (CO<jats:sub>2</jats:sub>) photoreduction into value‐added chemicals and solar fuels (for example, CO, HCOOH, CH<jats:sub>3</jats:sub>OH, CH<jats:sub>4</jats:sub>) has attracted more and more attention. In nature, photosynthetic organisms effectively convert CO<jats:sub>2</jats:sub> and H<jats:sub>2</jats:sub>O to carbohydrates and oxygen (O<jats:sub>2</jats:sub>) using sunlight, which has inspired the development of low‐cost, stable, and effective artificial photocatalysts for CO<jats:sub>2</jats:sub> photoreduction. Due to their low cost, facile synthesis, excellent light harvesting, multiple exciton generation, feasible charge‐carrier regulation, and abundant surface sites, semiconductor quantum dots (QDs) have recently been identified as one of the most promising materials for establishing highly efficient artificial photosystems. Recent advances in CO<jats:sub>2</jats:sub> photoreduction using semiconductor QDs are highlighted. First, the unique photophysical and structural properties of semiconductor QDs, which enable their versatile applications in solar energy conversion, are analyzed. Recent applications of QDs in photocatalytic CO<jats:sub>2</jats:sub> reduction are then introduced in three categories: binary II–VI semiconductor QDs (e.g., CdSe, CdS, and ZnSe), ternary I–III–VI semiconductor QDs (e.g., CuInS<jats:sub>2</jats:sub> and CuAlS<jats:sub>2</jats:sub>), and perovskite‐type QDs (e.g., CsPbBr<jats:sub>3</jats:sub>, CH<jats:sub>3</jats:sub>NH<jats:sub>3</jats:sub>PbBr<jats:sub>3</jats:sub>, and Cs<jats:sub>2</jats:sub>AgBiBr<jats:sub>6</jats:sub>). Finally, the challenges and prospects in solar CO<jats:sub>2</jats:sub> reduction with QDs in the future are discussed.</jats:p>

収録刊行物

被引用文献 (5)*注記

もっと見る

問題の指摘

ページトップへ