Germinal Center B Cell-Like (GCB) and Activated B Cell-Like (ABC) Type of Diffuse Large B Cell Lymphoma (DLBCL): Analysis of Molecular Predictors, Signatures, Cell Cycle State and Patient Survival
-
- S. Blenk
- Department of Bioinformatics, University of Würzburg, Biozentrum, Am Hubland D-97074 Universität Würzburg, Germany.
-
- J. Engelmann
- Department of Bioinformatics, University of Würzburg, Biozentrum, Am Hubland D-97074 Universität Würzburg, Germany.
-
- M. Weniger
- Department of Bioinformatics, University of Würzburg, Biozentrum, Am Hubland D-97074 Universität Würzburg, Germany.
-
- J. Schultz
- Department of Bioinformatics, University of Würzburg, Biozentrum, Am Hubland D-97074 Universität Würzburg, Germany.
-
- M. Dittrich
- Department of Bioinformatics, University of Würzburg, Biozentrum, Am Hubland D-97074 Universität Würzburg, Germany.
-
- A. Rosenwald
- Institute for Pathology, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.
-
- H.K. Müller-Hermelink
- Institute for Pathology, Josef-Schneider-Str. 2, 97080 Würzburg, Germany.
-
- T. Müller
- Department of Bioinformatics, University of Würzburg, Biozentrum, Am Hubland D-97074 Universität Würzburg, Germany.
-
- T. Dandekar
- Department of Bioinformatics, University of Würzburg, Biozentrum, Am Hubland D-97074 Universität Würzburg, Germany.
この論文をさがす
説明
<jats:p> Aiming to find key genes and events, we analyze a large data set on diffuse large B-cell lymphoma (DLBCL) gene-expression (248 patients, 12196 spots). Applying the loess normalization method on these raw data yields improved survival predictions, in particular for the clinical important group of patients with medium survival time. Furthermore, we identify a simplified prognosis predictor, which stratifies different risk groups similarly well as complex signatures. </jats:p><jats:p> We identify specific, activated B cell-like (ABC) and germinal center B cell-like (GCB) distinguishing genes. These include early (e.g. CDKN3) and late (e.g. CDKN2C) cell cycle genes. </jats:p><jats:p> Independently from previous classification by marker genes we confirm a clear binary class distinction between the ABC and GCB subgroups. An earlier suggested third entity is not supported. A key regulatory network, distinguishing marked over-expression in ABC from that in GCB, is built by: ASB13, BCL2, BCL6, BCL7A, CCND2, COL3A1, CTGF, FN1, FOXP1, IGHM, IRF4, LMO2, LRMP, MAPK10, MME, MYBL1, NEIL1 and SH3BP5. It predicts and supports the aggressive behaviour of the ABC subgroup. These results help to understand target interactions, improve subgroup diagnosis, risk prognosis as well as therapy in the ABC and GCB DLBCL subgroups. </jats:p>
収録刊行物
-
- Cancer Informatics
-
Cancer Informatics 3 117693510700300-, 2007-01
SAGE Publications
- Tweet
キーワード
- Data Sharing
- AUC
- pancreatic cancer
- biostatistics
- Array CGH
- infrastructure
- peaks
- Biochemistry
- top-down processing
- phase
- prostrate cancer
- early detection
- RC254-282
- amplitude
- Cancer
- microarray data management software
- simulation
- Other Quantitative Biology (q-bio.OT)
- pathway enrichment analysis
- ovarian cancer
- peak capacity
- microarray
- signal transduction
- G proteins
- MALDI-TOF
- Bioinformatics
- Biomedical Engineering
- Biophysics
- proteomics
- protein profile
- denoising
- protein profiles
- MALDI
- peak quantification
- multi-disciplinary
- software
- glioblastoma
- biomarkers
- Hybrid Database Integration
- mass resolution
- FOS: Biological sciences
- SELDI
- cancer; gene expression; immunity; prognosis; regulation
- Data sharing
- Gene expression
- Other Mathematics
- isotope distribution
- p53
- Heterogeneous Database Integration
- 610 Medizin
- weakly nonlinear stability
- random effect models
- Microarray
- combining data
- Tissue microarray
- predictive model
- Engineering
- feature selection
- peak alignment
- Gene selection
- SELDI-TOF-MS
- disease prediction models
- gene function prediction
- mass spectrometry
- Tissue microarray analysis
- cervical
- alteration detection
- Neoplasms. Tumors. Oncology. Including cancer and carcinogens
- CNA
- bioinformatics tools
- bioinformatics
- protein-protein interaction database
- Cancer classification
- prostate cancer
- information integration
- Quantitative Biology - Other Quantitative Biology
- 004
- neoplasia
- tumor growth
- Networking and Information Technology R&D (NITRD)
- growth rate
- approximation-assisted estimation
- variation
- Biomarker discovery
- large-sample bias and risk
- data synthesis
- spectra
- microarray expression profiling
- Oncology and Carcinogenesis
- cross-validation
- Content-based Search
- linear and non-linear shrinkage estimators
- Data Warehousing
- CHART
- cancer genome
- Distributed Hash Table
- membrane based receptors
- Quantitative Biology - Genomics
- fractionation
- visualization
- radiotherapy
- Genomics (q-bio.GN)
- Biomedical and Clinical Sciences
- Mediation
- prediction
- bottom-up processing.
- probe-level test
- protein structure prediction
- meta-analysis
- Turing pattern
- array-CGH
- and Structural Biology
- gene expression
- HART
- microarray data repository
- interacting particle system
詳細情報 詳細情報について
-
- CRID
- 1362825896180347392
-
- DOI
- 10.1177/117693510700300004
- 10.1177/117693510700300006
- 10.1177/117693510700300022
- 10.1177/117693510800600008
- 10.1177/117693510500100108
- 10.1177/117693510500100105
- 10.1177/117693510700300032
- 10.1177/117693510700300028
- 10.1177/117693510700500005
- 10.1177/117693510700300017
- 10.1177/117693510700300008
- 10.1177/117693510600200024
- 10.1177/117693510600200009
- 10.1177/117693510600200015
- 10.1177/117693510800600003
- 10.1177/117693510800600001
- 10.1177/117693510600200012
- 10.1177/117693510600200017
- 10.1177/117693510700300015
- 10.1177/117693510600200010
- 10.1177/117693510600200018
- 10.1177/117693510700300024
- 10.1177/117693510600200020
- 10.1177/117693510600200002
- 10.1177/117693510500100106
- 10.1177/117693510800600002
- 10.1177/117693510700300007
- 10.1177/117693510700400004
- 10.1177/117693510700300001
- 10.1177/117693510500100107
- 10.1177/117693510700300013
- 10.1177/117693510500100101
- 10.1177/117693510700300026
- 10.1177/117693510500100102
- 10.1177/117693510700300021
- 10.1177/117693510500100103
- 10.1177/117693510600200014
- 10.1177/117693510600200021
- 10.1177/117693510800600005
- 10.1177/117693511000900001
- 10.1177/117693510700400003
- 10.1177/117693510700300014
- 10.1177/117693510600200025
- 10.1177/117693510700300027
- 10.1177/117693510600200003
- 10.1177/117693510600200026
- 10.1177/117693510700500003
- 10.1177/117693510700300018
- 10.1177/117693510700500004
- 10.1177/117693510700500001
- 10.1177/117693510600200007
- 10.1177/117693510700300002
- 10.1177/117693510700300020
- 10.1177/117693510600200001
- 10.1177/117693510700300019
- 10.1177/117693510700300010
- 10.1177/117693510500100109
- 10.1177/117693510700300031
- 10.1177/117693510700300012
- 10.1177/117693510700400002
- 10.1177/117693510700300011
- 10.1177/117693510800600006
- 10.1177/117693510600200008
- 10.1177/117693510600200027
- 10.1177/117693510600200023
- 10.1177/117693510600200022
- 10.1177/117693510700400001
- 10.1177/117693510800600004
- 10.1177/117693510700300025
- 10.48550/arxiv.q-bio/0610039
- 10.5283/epub.34107
- 10.4137/cin.s0
-
- HANDLE
- 10161/11570
-
- ISSN
- 11769351
-
- PubMed
- 19305630
- 19390668
- 19259406
- 19305633
- 19305628
- 19305631
- 19458776
- 19455243
- 19455256
- 19458773
- 19081778
- 19455238
- 19458777
- 18079974
- 19259420
- 19390661
- 19455233
- 19455236
- 19079768
- 19390662
- 17404607
- 19455235
- 19455240
- 19390665
- 19455234
- 19455232
- 19458768
- 19259411
- 19305625
- 20981138
- 19390660
- 19458762
- 19458761
- 19458752
- 19455259
- 17992253
- 19390664
- 19455257
- 19458778
- 19455247
- 19390666
- 19455241
- 19455252
- 19259407
- 19455254
- 19305632
- 19455255
- 19259400
- 19455244
- 19458769
- 19305634
- 19455246
- 19259401
- 19455231
- 19458772
- 19458763
- 19458759
- 19458779
- 19455230
- 19259403
- 19458775
- 19455253
- 19458766
- 19455245
- 19305627
- 19458771
- 19458756
-
- Web Site
- http://journals.sagepub.com/doi/pdf/10.1177/117693510700300004
- http://journals.sagepub.com/doi/full-xml/10.1177/117693510700300004
- http://journals.sagepub.com/doi/pdf/10.1177/117693510700300006
- http://journals.sagepub.com/doi/full-xml/10.1177/117693510700300006
- http://journals.sagepub.com/doi/pdf/10.1177/117693510700300022
- http://journals.sagepub.com/doi/full-xml/10.1177/117693510700300022
- http://journals.sagepub.com/doi/pdf/10.1177/117693510800600008
- http://journals.sagepub.com/doi/full-xml/10.1177/117693510800600008
-
- データソース種別
-
- Crossref
- OpenAIRE