Prospective Review of Mesenchymal Stem Cells Differentiation into Osteoblasts

  • Priyanka Garg
    Department of Orthopaedic Surgery University of Toledo Medical Center Toledo Ohio USA
  • Matthew M Mazur
    Department of Orthopaedic Surgery University of Toledo Medical Center Toledo Ohio USA
  • Amy C Buck
    Department of Orthopaedic Surgery University of Toledo Medical Center Toledo Ohio USA
  • Meghan E Wandtke
    Department of Orthopaedic Surgery University of Toledo Medical Center Toledo Ohio USA
  • Jiayong Liu
    Department of Orthopaedic Surgery University of Toledo Medical Center Toledo Ohio USA
  • Nabil A Ebraheim
    Department of Orthopaedic Surgery University of Toledo Medical Center Toledo Ohio USA

説明

<jats:p>Stem cell research has been a popular topic in the past few decades. This review aims to discuss factors that help regulate, induce, and enhance mesenchymal stem cell (<jats:styled-content style="fixed-case">MSC</jats:styled-content>) differentiation into osteoblasts for bone regeneration. The factors analyzed include bone morphogenic protein (<jats:styled-content style="fixed-case">BMP</jats:styled-content>), transforming growth factor β (<jats:styled-content style="fixed-case">TGF</jats:styled-content>‐β), <jats:styled-content style="fixed-case">s</jats:styled-content>tromal cell‐derived factor 1 (<jats:styled-content style="fixed-case">SDF</jats:styled-content>‐1), insulin‐like growth factor type 1 (<jats:styled-content style="fixed-case">IGF</jats:styled-content>‐1), histone demethylase <jats:styled-content style="fixed-case">JMJD</jats:styled-content>3, cyclin dependent kinase 1 (<jats:styled-content style="fixed-case">CDK</jats:styled-content>1), fucoidan, Runx2 transcription factor, and <jats:styled-content style="fixed-case">TAZ</jats:styled-content> transcriptional coactivator. Methods promoting bone healing are also evaluated in this review that have shown promise in previous studies. Methods tested using animal models include low intensity pulsed ultrasound (<jats:styled-content style="fixed-case">LIPUS</jats:styled-content>) with <jats:styled-content style="fixed-case">MSC</jats:styled-content>, micro motion, <jats:styled-content style="fixed-case">AMD</jats:styled-content>3100 injections, <jats:styled-content style="fixed-case">BMP</jats:styled-content> delivery, <jats:styled-content style="fixed-case">MSC</jats:styled-content> transplantation, tissue engineering utilizing scaffolds, anti‐<jats:styled-content style="fixed-case">IL</jats:styled-content>‐20 monoclonal antibody, low dose photodynamic therapy, and bone marrow stromal cell transplants. Human clinical trial methods analyzed include osteoblast injections, bone marrow grafts, bone marrow and platelet rich plasma transplantation, tissue engineering using scaffolds, and recombinant human <jats:styled-content style="fixed-case">BMP</jats:styled-content>‐2. These methods have been shown to promote and accelerate new bone formation. These various methods for enhanced bone regeneration have the potential to be used, following further research, in clinical practice.</jats:p>

収録刊行物

被引用文献 (2)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ