Regulatory on/off minimization of metabolic flux changes after genetic perturbations

  • Tomer Shlomi
    School of Computer Science and School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; and Department of Computer Science, Academic College of Tel Aviv Yaffo, Tel Aviv 61162, Israel
  • Omer Berkman
    School of Computer Science and School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; and Department of Computer Science, Academic College of Tel Aviv Yaffo, Tel Aviv 61162, Israel
  • Eytan Ruppin
    School of Computer Science and School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; and Department of Computer Science, Academic College of Tel Aviv Yaffo, Tel Aviv 61162, Israel

説明

<jats:p>Predicting the metabolic state of an organism after a gene knockout is a challenging task, because the regulatory system governs a series of transient metabolic changes that converge to a steady-state condition. Regulatory on/off minimization (ROOM) is a constraint-based algorithm for predicting the metabolic steady state after gene knockouts. It aims to minimize the number of significant flux changes (hence on/off) with respect to the wild type. ROOM is shown to accurately predict steady-state metabolic fluxes that maintain flux linearity, in agreement with experimental flux measurements, and to correctly identify short alternative pathways used for rerouting metabolic flux in response to gene knockouts. ROOM's growth rate and flux predictions are compared with previously suggested algorithms, minimization of metabolic adjustment, and flux balance analysis (FBA). We find that minimization of metabolic adjustment provides accurate predictions for the initial transient growth rates observed during the early postperturbation state, whereas ROOM and FBA more successfully predict final higher steady-state growth rates. Although FBA explicitly maximizes the growth rate, ROOM does not, and only implicitly favors flux distributions having high growth rates. This indicates that, even though the cell has not evolved to cope with specific mutations, regulatory mechanisms aiming to minimize flux changes after genetic perturbations may indeed work to this effect. Further work is needed to identify metrics that characterize the complete trajectory from the initial to the final metabolic steady states after genetic perturbations.</jats:p>

収録刊行物

被引用文献 (2)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ