Accelerated discovery of metallic glasses through iteration of machine learning and high-throughput experiments
-
- Fang Ren
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
-
- Logan Ward
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.
-
- Travis Williams
- College of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA.
-
- Kevin J. Laws
- School of Materials Science and Engineering, UNSW, Sydney, New South Wales 2052, Australia.
-
- Christopher Wolverton
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208, USA.
-
- Jason Hattrick-Simpers
- Materials for Energy and Sustainable Development Group, National Institute of Standards and Technology, MS 8520, Gaithersburg, MD 20899, USA.
-
- Apurva Mehta
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.
Description
<jats:p>Coupling artificial intelligence with high-throughput experimentation accelerates discovery of amorphous alloys.</jats:p>
Journal
-
- Science Advances
-
Science Advances 4 (4), eaaq1566-, 2018-04-06
American Association for the Advancement of Science (AAAS)
- Tweet
Details 詳細情報について
-
- CRID
- 1363107370628289664
-
- ISSN
- 23752548
-
- Data Source
-
- Crossref