Tilted algebras

抄録

<p>Let <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> be a finite dimensional hereditary algebra over a field, with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding="application/x-tex">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> simple <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-modules. An <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-module <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper T Subscript upper A"> <mml:semantics> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>A</mml:mi> </mml:msub> <mml:annotation encoding="application/x-tex">T_A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> with <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="n"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding="application/x-tex">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> pairwise nonisomorphic indecomposable direct summands and satisfying <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="Ex t Superscript 1 Baseline left-parenthesis upper T Subscript upper A Baseline comma upper T Subscript upper A Baseline right-parenthesis equals 0"> <mml:semantics> <mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>Ex</mml:mtext> </mml:mrow> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mtext>t</mml:mtext> </mml:mrow> <mml:mn>1</mml:mn> </mml:msup> </mml:mrow> <mml:mo stretchy="false">(</mml:mo> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>A</mml:mi> </mml:msub> </mml:mrow> <mml:mo>,</mml:mo> <mml:mspace width="thinmathspace" /> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:msub> <mml:mi>T</mml:mi> <mml:mi>A</mml:mi> </mml:msub> </mml:mrow> <mml:mo stretchy="false">)</mml:mo> <mml:mo>=</mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding="application/x-tex">{\text {Ex}}{{\text {t}}^1}({T_A},\,{T_A}) = 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is called a tilting module, and its endomorphism ring <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding="application/x-tex">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a tilted algebra. A tilting module defines a (usually nonhereditary) torsion theory, and the indecomposable <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper B"> <mml:semantics> <mml:mi>B</mml:mi> <mml:annotation encoding="application/x-tex">B</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-modules are in one-to-one correspondence to the indecomposable <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-modules which are either torsion or torsionfree. One of the main results of the paper asserts that an algebra of finite representation type with an indecomposable sincere representation is a tilted algebra provided its Auslander-Reiten quiver has no oriented cycles. In fact, tilting modules are introduced and studied for any finite dimensional algebra, generalizing recent results of Brenner and Butler.</p>

収録刊行物

被引用文献 (9)*注記

もっと見る

問題の指摘

ページトップへ