- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
-
- Tao Zhang
- Faculty of Physics and Center for Nanoscience (CeNS) Ludwig‐Maximilians‐Universität Geschwister‐Scholl‐Platz 1 80539 München Germany
-
- Caroline Hartl
- Faculty of Physics and Center for Nanoscience (CeNS) Ludwig‐Maximilians‐Universität Geschwister‐Scholl‐Platz 1 80539 München Germany
-
- Kilian Frank
- Faculty of Physics and Center for Nanoscience (CeNS) Ludwig‐Maximilians‐Universität Geschwister‐Scholl‐Platz 1 80539 München Germany
-
- Amelie Heuer‐Jungemann
- Faculty of Physics and Center for Nanoscience (CeNS) Ludwig‐Maximilians‐Universität Geschwister‐Scholl‐Platz 1 80539 München Germany
-
- Stefan Fischer
- Faculty of Physics and Center for Nanoscience (CeNS) Ludwig‐Maximilians‐Universität Geschwister‐Scholl‐Platz 1 80539 München Germany
-
- Philipp C. Nickels
- Faculty of Physics and Center for Nanoscience (CeNS) Ludwig‐Maximilians‐Universität Geschwister‐Scholl‐Platz 1 80539 München Germany
-
- Bert Nickel
- Faculty of Physics and Center for Nanoscience (CeNS) Ludwig‐Maximilians‐Universität Geschwister‐Scholl‐Platz 1 80539 München Germany
-
- Tim Liedl
- Faculty of Physics and Center for Nanoscience (CeNS) Ludwig‐Maximilians‐Universität Geschwister‐Scholl‐Platz 1 80539 München Germany
Search this article
Description
<jats:title>Abstract</jats:title><jats:p>3D crystals assembled entirely from DNA provide a route to design materials on a molecular level and to arrange guest particles in predefined lattices. This requires design schemes that provide high rigidity and sufficiently large open guest space. A DNA‐origami‐based “tensegrity triangle” structure that assembles into a 3D rhombohedral crystalline lattice with an open structure in which 90% of the volume is empty space is presented here. Site‐specific placement of gold nanoparticles within the lattice demonstrates that these crystals are spacious enough to efficiently host 20 nm particles in a cavity size of 1.83 × 10<jats:sup>5</jats:sup> nm<jats:sup>3</jats:sup>, which would also suffice to accommodate ribosome‐sized macromolecules. The accurate assembly of the DNA origami lattice itself, as well as the precise incorporation of gold particles, is validated by electron microscopy and small‐angle X‐ray scattering experiments. The results show that it is possible to create DNA building blocks that assemble into lattices with customized geometry. Site‐specific hosting of nano objects in the optically transparent DNA lattice sets the stage for metamaterial and structural biology applications.</jats:p>
Journal
-
- Advanced Materials
-
Advanced Materials 30 (28), 1800273-, 2018-05-18
Wiley
- Tweet
Details 詳細情報について
-
- CRID
- 1363388843492014848
-
- ISSN
- 15214095
- 09359648
-
- Data Source
-
- Crossref