PerR Controls Oxidative Stress Resistance and Iron Storage Proteins and Is Required for Virulence in <i>Staphylococcus aureus</i>

  • Malcolm J. Horsburgh
    <!--label omitted: 1-->Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN,1 and
  • Mark O. Clements
    <!--label omitted: 2-->Microbiology and Tumour Biology Centre, Karolinska Institute, 17177 Stockholm, Sweden2
  • Howard Crossley
    <!--label omitted: 1-->Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN,1 and
  • Eileen Ingham
    <!--label omitted: 3-->Department of Microbiology, University of Leeds, Leeds,3 England, and
  • Simon J. Foster
    <!--label omitted: 1-->Department of Molecular Biology and Biotechnology, University of Sheffield, Western Bank, Sheffield S10 2TN,1 and

説明

<jats:title>ABSTRACT</jats:title> <jats:p> The <jats:italic>Staphylococcus aureus</jats:italic> genome encodes three ferric uptake regulator (Fur) homologues: Fur, PerR, and Zur. To determine the exact role of PerR, we inactivated the gene by allelic replacement using a kanamycin cassette, creating strain MJH001 ( <jats:italic>perR</jats:italic> ). PerR was found to control transcription of the genes encoding the oxidative stress resistance proteins catalase (KatA), alkyl hydroperoxide reductase (AhpCF), bacterioferritin comigratory protein (Bcp), and thioredoxin reductase (TrxB). Furthermore, PerR regulates transcription of the genes encoding the iron storage proteins ferritin (Ftn) and the ferritin-like Dps homologue, MrgA. Transcription of <jats:italic>perR</jats:italic> was autoregulated, and PerR repressed transcription of the iron homeostasis regulator Fur, which is a positive regulator of catalase expression. PerR functions as a manganese-dependent, transcriptional repressor of the identified regulon. Elevated iron concentrations produced induction of the PerR regulon. PerR may act as a peroxide sensor, since addition of external hydrogen peroxide to 8325-4 (wild type) resulted in increased transcription of most of the PerR regulon, except for <jats:italic>fur</jats:italic> and <jats:italic>perR</jats:italic> itself. The PerR-regulated <jats:italic>katA</jats:italic> gene encodes the sole catalase of <jats:italic>S. aureus,</jats:italic> which is an important starvation survival determinant but is surprisingly not required for pathogenicity in a murine skin abscess model of infection. In contrast, PerR is not necessary for starvation survival but is required for full virulence ( <jats:italic>P</jats:italic> < 0.005) in this model of infection. PerR of <jats:italic>S. aureus</jats:italic> may act as a redox sentinel protein during infection, analogous to the in vitro activities of OxyR and PerR of <jats:italic>Escherichia coli</jats:italic> and <jats:italic>Bacillus subtilis</jats:italic> , respectively. However, it differs in its response to the metal balance within the cell and has the added capability of regulating iron uptake and storage. </jats:p>

収録刊行物

被引用文献 (5)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ