Positivity in 𝑇-equivariant 𝐾-theory of flag varieties associated to Kac-Moody groups II
説明
<p>We prove sign-alternation of the structure constants in the basis of the structure sheaves of opposite Schubert varieties in the torus-equivariant Grothendieck group of coherent sheaves on the flag varieties<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G slash upper P"><mml:semantics><mml:mrow><mml:mi>G</mml:mi><mml:mrow class="MJX-TeXAtom-ORD"><mml:mo>/</mml:mo></mml:mrow><mml:mi>P</mml:mi></mml:mrow><mml:annotation encoding="application/x-tex">G/P</mml:annotation></mml:semantics></mml:math></inline-formula>associated to an arbitrary symmetrizable Kac-Moody group<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper G"><mml:semantics><mml:mi>G</mml:mi><mml:annotation encoding="application/x-tex">G</mml:annotation></mml:semantics></mml:math></inline-formula>, where<inline-formula content-type="math/mathml"><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper P"><mml:semantics><mml:mi>P</mml:mi><mml:annotation encoding="application/x-tex">P</mml:annotation></mml:semantics></mml:math></inline-formula>is any parabolic subgroup. This generalizes the work of Anderson-Griffeth-Miller from the finite case to the general Kac-Moody case, and affirmatively answers a conjecture of Lam-Schilling-Shimozono regarding the signs of the structure constants in the case of the affine Grassmannian.</p>
収録刊行物
-
- Representation Theory of the American Mathematical Society
-
Representation Theory of the American Mathematical Society 21 (4), 35-60, 2017-03-24
American Mathematical Society (AMS)
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1363388844279259776
-
- DOI
- 10.1090/ert/494
-
- ISSN
- 10884165
-
- データソース種別
-
- Crossref