- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Polar factorization and monotone rearrangement of vector‐valued functions
Search this article
Description
<jats:title>Abstract</jats:title><jats:p>Given a probability space (<jats:italic>X</jats:italic>, μ) and a bounded domain Ω in ℝ<jats:sup><jats:italic>d</jats:italic></jats:sup> equipped with the Lebesgue measure |·| (normalized so that |Ω| = 1), it is shown (under additional technical assumptions on <jats:italic>X</jats:italic> and Ω) that for every vector‐valued function u ∈ L<jats:sup>p</jats:sup> (<jats:italic>X</jats:italic>, μ; ℝ<jats:sup>d</jats:sup>) there is a unique “polar factorization” <jats:italic>u</jats:italic> = ∇Ψ<jats:italic>s</jats:italic>, where Ψ is a convex function defined on Ω and <jats:italic>s</jats:italic> is a measure‐preserving mapping from (<jats:italic>X</jats:italic>, μ) into (Ω, |·|), provided that <jats:italic>u</jats:italic> is nondegenerate, in the sense that μ(<jats:italic>u</jats:italic><jats:sup>−1</jats:sup>(<jats:italic>E</jats:italic>)) = 0 for each Lebesgue negligible subset <jats:italic>E</jats:italic> of ℝ<jats:sup>d</jats:sup>.</jats:p><jats:p>Through this result, the concepts of polar factorization of real matrices, Helmholtz decomposition of vector fields, and nondecreasing rearrangements of real‐valued functions are unified.</jats:p><jats:p>The Monge‐Ampère equation is involved in the polar factorization and the proof relies on the study of an appropriate “Monge‐Kantorovich” problem.</jats:p>
Journal
-
- Communications on Pure and Applied Mathematics
-
Communications on Pure and Applied Mathematics 44 (4), 375-417, 1991-06
Wiley
- Tweet
Details 詳細情報について
-
- CRID
- 1363388844331298560
-
- NII Article ID
- 30027208840
-
- ISSN
- 10970312
- 00103640
- http://id.crossref.org/issn/00103640
-
- Data Source
-
- Crossref
- CiNii Articles