-
- Luca Moci
- Université Paris-Diderot Paris 7, France
この論文をさがす
説明
<jats:p> Given the toric (or toral) arrangement defined by a root system <jats:inline-formula> <jats:tex-math>\Phi</jats:tex-math> </jats:inline-formula> , we classify and count its components of each dimension. We show how to reduce to the case of 0-dimensional components, and in this case we give an explicit formula involving the maximal subdiagrams of the affine Dynkin diagram of <jats:inline-formula> <jats:tex-math>\Phi</jats:tex-math> </jats:inline-formula> . Then we compute the Euler characteristic and the Poincar\'{e} polynomial of the complement of the arrangement, that is the set of regular points of the torus. </jats:p>
収録刊行物
-
- Rendiconti Lincei, Matematica e Applicazioni
-
Rendiconti Lincei, Matematica e Applicazioni 19 (4), 293-308, 2008-12-31
European Mathematical Society - EMS - Publishing House GmbH
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1363388844733442432
-
- DOI
- 10.4171/rlm/526
-
- ISSN
- 17200768
- 11206330
-
- データソース種別
-
- Crossref