Reaching the Energy Density Limit of Layered O3‐NaNi<sub>0.5</sub>Mn<sub>0.5</sub>O<sub>2</sub> Electrodes via Dual Cu and Ti Substitution

  • Qing Wang
    Chimie du Solide‐Energie UMR8260 Collège de France 75231 Paris Cedex 05 France
  • Sathiya Mariyappan
    Chimie du Solide‐Energie UMR8260 Collège de France 75231 Paris Cedex 05 France
  • Jean Vergnet
    Chimie du Solide‐Energie UMR8260 Collège de France 75231 Paris Cedex 05 France
  • Artem M. Abakumov
    Center for Energy Science and Technology Skolkovo Institute of Science and Technology Nobel str. 3 143026 Moscow Russia
  • Gwenaëlle Rousse
    Sorbonne Université 4 place Jussieu 75005 Paris France
  • François Rabuel
    Réseau sur le Stockage Electrochimique de l'Energie (RS2E) FR CNRS 3459 80039 Amiens France
  • Mohamed Chakir
    Renault Technocentre 1 Avenue du Golf 78288 Guyancourt France
  • Jean‐Marie Tarascon
    Chimie du Solide‐Energie UMR8260 Collège de France 75231 Paris Cedex 05 France

抄録

<jats:title>Abstract</jats:title><jats:p>Although being less competitive energy density‐wise, Na‐ion batteries are serious alternatives to Li‐ion ones for applications where cost and sustainability dominate. O3‐type sodium layered oxides could partially overcome the energy limitation, but their practical use is plagued by a reaction process that enlists numerous phase changes and volume variations while additionally being moisture sensitive. Here, it is shown that the double substitution of Ti for Mn and Cu for Ni in O3‐NaNi<jats:sub>0.5−</jats:sub><jats:italic><jats:sub>y</jats:sub></jats:italic>Cu<jats:italic><jats:sub>y</jats:sub></jats:italic>Mn<jats:sub>0.5−</jats:sub><jats:italic><jats:sub> z</jats:sub></jats:italic>Ti<jats:italic><jats:sub>z</jats:sub></jats:italic>O<jats:sub>2</jats:sub> can alleviate most of these issues. Among this series, electrodes with specific compositions are identified that can reversibly release and uptake ≈0.9 sodium per formula unit via a smooth voltage‐composition profile enlisting minor lattice volume changes upon cycling as opposed to Δ<jats:italic>V</jats:italic>/<jats:italic>V</jats:italic>≈23% in the parent NaNi<jats:sub>0.5</jats:sub>Mn<jats:sub>0.5</jats:sub>O<jats:sub>2</jats:sub> while showing a greater resistance against moisture. The positive attributes of substitution are rationalized by structure considerations supported by density functional theory (DFT) calculations. Electrodes with sustained capacities of ≈180 mAh g<jats:sup>−1</jats:sup> are successfully implemented into 18 650 Na‐ion cells having greater performances, energy density‐wise (≈250 Wh L<jats:sup>−1</jats:sup>), than today's Na<jats:sub>3</jats:sub>V<jats:sub>2</jats:sub>(PO<jats:sub>4</jats:sub>)<jats:sub>2</jats:sub>F<jats:sub>3</jats:sub>/HC Na‐ion technology which excels in rate capabilities. These results constitute a step forward in increasing the practicality of Na‐ion technology with additional opportunities for applications in which energy density prevails over rate capability.</jats:p>

収録刊行物

被引用文献 (2)*注記

もっと見る

問題の指摘

ページトップへ