Paeoniflorin abrogates DSS-induced colitis via a TLR4-dependent pathway

  • Jingjing Zhang
    Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China;
  • Wei Dou
    Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China;
  • Eryun Zhang
    Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China;
  • Aning Sun
    Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China;
  • Lili Ding
    Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China;
  • Xiaohui Wei
    Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China;
  • Guixin Chou
    Shanghai R&D Center for Standardization of Traditional Chinese Medicine, Shanghai, China
  • Sridhar Mani
    Departments of Medicine and Genetics, Albert Einstein College of Medicine, New York, New York; and
  • Zhengtao Wang
    Shanghai Key Laboratory of Complex Prescription and MOE Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, China;

Description

<jats:p> Paeonia lactiflora Pall is one of the most well-known herbs in China, Korea, and Japan for more than 1,200 years. Paeoniflorin, the major bioactive component of peony root, has recently been reported to have anticolitic activity. However, the underlying molecular mechanism is unclear. The present study was to explore the possible mechanism of paeoniflorin in attenuating dextran sulfate sodium (DSS)-induced colitis. Pre- and coadministration of paeoniflorin significantly reduced the severity of colitis and resulted in downregulation of several inflammatory parameters in the colon, including the activity of myeloperoxidase (MPO), the levels of TNF-α and IL-6, and the mRNA expression of proinflammatory mediators (MCP-1, Cox2, IFN-γ, TNF-α, IL-6, and IL-17). The decline in the activation of NF-κB p65, ERK, JNK, and p38 MAPK correlated with a decrease in mucosal Toll-like receptor 4 (TLR4) but not TLR2 or TLR5 expression. In accordance with the in vivo results, paeoniflorin downregulated TLR4 expression, blocked nuclear translocation of NF-κB p65, and reduced the production of IL-6 in LPS-stimulated mouse macrophage RAW264.7 cells. Transient transfection assay performed in LPS-stimulated human colon cancer HT-29 cells indicated that paeoniflorin inhibits NF-κB transcriptional activity in a dose-dependent manner. TLR4 knockdown and overexpression experiments demonstrated a requirement for TLR4 in paeoniflorin-mediated downregulation of inflammatory cytokines. Thus, for the first time, the present study indicates that paeoniflorin abrogates DSS-induced colitis via decreasing the expression of TLR4 and suppressing the activation of NF-κB and MAPK pathways. </jats:p>

Journal

Citations (4)*help

See more

Details 詳細情報について

Report a problem

Back to top