Single-cell analysis of SARS-CoV-2 receptor ACE2 and spike protein priming expression of proteases in the human heart

  • Hanning Liu
    National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
  • Shujie Gai
    National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
  • Xiaoyi Wang
    National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
  • Juntong Zeng
    National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
  • Cheng Sun
    National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
  • Yan Zhao
    National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
  • Zhe Zheng
    National Clinical Research Center of Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China

説明

<jats:title>Abstract</jats:title> <jats:sec> <jats:title>Aims</jats:title> <jats:p>Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) directly binds to ACE2 (angiotensin-converting enzyme 2) to facilitate cellular entry. Compared with the lung or respiratory tract, the human heart exhibits greater ACE2 expression. However, little substantial damage was found in the heart tissue, and no viral particles were observed in the cardiac myocytes. This study aims to analyse ACE2 and SARS-CoV-2 spike (S) protein proteases at the single-cell level, to explore the cardiac involvement in COVID-19 and improve our understanding of the potential cardiovascular implications of COVID-19.</jats:p> </jats:sec> <jats:sec> <jats:title>Methods and Results</jats:title> <jats:p>With meta-analysis, the prevalence of cardiac injury in COVID-19 patients varies from 2% [95% confidence interval (CI) 0–5%, I2 = 0%] in non-ICU patients to 59% (95% CI 48–71%, I2 = 85%) in non-survivors. With public single-cell sequence data analysis, ACE2 expression in the adult human heart is higher than that in the lung (adjusted P &lt; 0.0001). Inversely, the most important S protein cleavage protease TMPRSS2 (transmembrane protease serine protease-2) in the heart exhibits an extremely lower expression than that in the lung (adjusted P &lt; 0.0001), which may restrict entry of SARS-CoV-2 into cardiac cells. Furthermore, we discovered that other S protein proteases, CTSL (cathepsin L) and FURIN (furin, paired basic amino acid cleaving enzyme), were expressed in the adult heart at a similar level to that in the lung, which may compensate for TMPRSS2, mediating cardiac involvement in COVID-19.</jats:p> </jats:sec> <jats:sec> <jats:title>Conclusion</jats:title> <jats:p>Compared with the lung, ACE2 is relatively more highly expressed in the human heart, while the key S protein priming protease, TMPRSS2, is rarely expressed. The low percentage of ACE2+/TMPRSS2+ cells reduced heart vulnerability to SARS-CoV-2 to some degree. CTSL and FURIN may compensate for S protein priming to mediate SARS-CoV-2 infection of the heart.</jats:p> </jats:sec>

収録刊行物

被引用文献 (2)*注記

もっと見る

問題の指摘

ページトップへ