Shape optimization of a body located in low Reynolds number flow

抄録

<jats:title>Abstract</jats:title><jats:p>The purpose of this study is to perform a numerical application of the shape optimization formulation of a body located in an incompressible viscous flow field. The formulation is based on an optimal control theory in which a performance function of the fluid force is introduced. The performance function should be minimized satisfying the state equation. This problem can be transformed into the minimization problem without constraint condition by the Lagrange multiplier method and the adjoint equations using adjoint variables corresponding to the state equations. As a numerical study, the drag force minimization problem in the steady Stokes flow, which means approximated equation of the low Reynolds number Navier–Stokes equation is carried out. After that, the unsteady Navier–Stokes flow is analysed. As the minimization algorithm, the steepest descent method is successfully applied. Copyright © 2005 John Wiley & Sons, Ltd.</jats:p>

収録刊行物

被引用文献 (4)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ