Extending Cassava Root Shelf Life via Reduction of Reactive Oxygen Species Production

  • Tawanda Zidenga
    Department of Plant Cell and Molecular Biology, Ohio State University, Columbus, Ohio 43210 (T.Z., E.L.-G., H.M., D.S., R.S.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.Z., E.L.-G., R.S.); New Mexico Consortium/Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (T.Z., R.S.); Phycal, Inc., St. Louis, Missouri 63132 (E.L.-G.); Syngenta, Research Park, North Caroli
  • Elisa Leyva-Guerrero
    Department of Plant Cell and Molecular Biology, Ohio State University, Columbus, Ohio 43210 (T.Z., E.L.-G., H.M., D.S., R.S.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.Z., E.L.-G., R.S.); New Mexico Consortium/Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (T.Z., R.S.); Phycal, Inc., St. Louis, Missouri 63132 (E.L.-G.); Syngenta, Research Park, North Caroli
  • Hangsik Moon
    Department of Plant Cell and Molecular Biology, Ohio State University, Columbus, Ohio 43210 (T.Z., E.L.-G., H.M., D.S., R.S.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.Z., E.L.-G., R.S.); New Mexico Consortium/Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (T.Z., R.S.); Phycal, Inc., St. Louis, Missouri 63132 (E.L.-G.); Syngenta, Research Park, North Caroli
  • Dimuth Siritunga
    Department of Plant Cell and Molecular Biology, Ohio State University, Columbus, Ohio 43210 (T.Z., E.L.-G., H.M., D.S., R.S.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.Z., E.L.-G., R.S.); New Mexico Consortium/Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (T.Z., R.S.); Phycal, Inc., St. Louis, Missouri 63132 (E.L.-G.); Syngenta, Research Park, North Caroli
  • Richard Sayre
    Department of Plant Cell and Molecular Biology, Ohio State University, Columbus, Ohio 43210 (T.Z., E.L.-G., H.M., D.S., R.S.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (T.Z., E.L.-G., R.S.); New Mexico Consortium/Los Alamos National Laboratory, Los Alamos, New Mexico 87544 (T.Z., R.S.); Phycal, Inc., St. Louis, Missouri 63132 (E.L.-G.); Syngenta, Research Park, North Caroli

抄録

<jats:title>Abstract</jats:title> <jats:p>One of the major constraints facing the large-scale production of cassava (Manihot esculenta) roots is the rapid postharvest physiological deterioration (PPD) that occurs within 72 h following harvest. One of the earliest recognized biochemical events during the initiation of PPD is a rapid burst of reactive oxygen species (ROS) accumulation. We have investigated the source of this oxidative burst to identify possible strategies to limit its extent and to extend cassava root shelf life. We provide evidence for a causal link between cyanogenesis and the onset of the oxidative burst that triggers PPD. By measuring ROS accumulation in transgenic low-cyanogen plants with and without cyanide complementation, we show that PPD is cyanide dependent, presumably resulting from a cyanide-dependent inhibition of respiration. To reduce cyanide-dependent ROS production in cassava root mitochondria, we generated transgenic plants expressing a codon-optimized Arabidopsis (Arabidopsis thaliana) mitochondrial alternative oxidase gene (AOX1A). Unlike cytochrome c oxidase, AOX is cyanide insensitive. Transgenic plants overexpressing AOX exhibited over a 10-fold reduction in ROS accumulation compared with wild-type plants. The reduction in ROS accumulation was associated with a delayed onset of PPD by 14 to 21 d after harvest of greenhouse-grown plants. The delay in PPD in transgenic plants was also observed under field conditions, but with a root biomass yield loss in the highest AOX-expressing lines. These data reveal a mechanism for PPD in cassava based on cyanide-induced oxidative stress as well as PPD control strategies involving inhibition of ROS production or its sequestration.</jats:p>

収録刊行物

  • Plant Physiology

    Plant Physiology 159 (4), 1396-1407, 2012-06-18

    Oxford University Press (OUP)

被引用文献 (1)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ