Radon inhalation decreases DNA damage induced by oxidative stress in mouse organs via the activation of antioxidative functions

  • Takahiro Kataoka
    Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
  • Hina Shuto
    Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
  • Shota Naoe
    Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
  • Junki Yano
    Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
  • Norie Kanzaki
    Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
  • Akihiro Sakoda
    Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
  • Hiroshi Tanaka
    Ningyo-toge Environmental Engineering Center, Japan Atomic Energy Agency, 1550 Kamisaibara, Kagamino-cho, Tomata-gun, Okayama 708-0698, Japan
  • Katsumi Hanamoto
    Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
  • Fumihiro Mitsunobu
    Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
  • Hiroaki Terato
    Advanced Science Research Center Okayama University, 5-1 Shikata-cho 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan
  • Kiyonori Yamaoka
    Graduate School of Health Sciences, Okayama University, 5-1 Shikata-cho, 2-chome, Kita-ku, Okayama-shi, Okayama 700-8558, Japan

抄録

<jats:title>Abstract</jats:title> <jats:p>Radon inhalation decreases the level of lipid peroxide (LPO); this is attributed to the activation of antioxidative functions. This activation contributes to the beneficial effects of radon therapy, but there are no studies on the risks of radon therapy, such as DNA damage. We evaluated the effect of radon inhalation on DNA damage caused by oxidative stress and explored the underlying mechanisms. Mice were exposed to radon inhalation at concentrations of 2 or 20 kBq/m3 (for one, three, or 10 days). The 8-hydroxy-2′-deoxyguanosine (8-OHdG) levels decreased in the brains of mice that inhaled 20 kBq/m3 radon for three days and in the kidneys of mice that inhaled 2 or 20 kBq/m3 radon for one, three or 10 days. The 8-OHdG levels in the small intestine decreased by approximately 20–40% (2 kBq/m3 for three days or 20 kBq/m3 for one, three or 10 days), but there were no significant differences in the 8-OHdG levels between mice that inhaled a sham treatment and those that inhaled radon. There was no significant change in the levels of 8-oxoguanine DNA glycosylase, which plays an important role in DNA repair. However, the level of Mn-superoxide dismutase (SOD) increased by 15–60% and 15–45% in the small intestine and kidney, respectively, following radon inhalation. These results suggest that Mn-SOD probably plays an important role in the inhibition of oxidative DNA damage.</jats:p>

収録刊行物

被引用文献 (3)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ