<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mmultiscripts><mml:mi mathvariant="normal">O</mml:mi><mml:mprescripts /><mml:none /><mml:mrow><mml:mn>16</mml:mn></mml:mrow></mml:mmultiscripts><mml:mo>+</mml:mo><mml:mmultiscripts><mml:mi mathvariant="normal">O</mml:mi><mml:mprescripts /><mml:none /><mml:mrow><mml:mn>16</mml:mn></mml:mrow></mml:mmultiscripts></mml:mrow></mml:math>molecular nature of the superdeformed band of<mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"><mml:mrow><mml:mmultiscripts><mml:mi mathvariant="normal">S</mml:mi><mml:mprescripts /><mml:none /><mml:mrow><mml:mn>32</mml:mn></mml:mrow></mml:mmultiscripts></mml:mrow></mml:math>and the evolution of the molecular structure

Search this article

Description

The relation between the superdeformed band of $^{32}{\rm S}$ and $^{16}{\rm O} + ^{16}{\rm O}$ molecular bands is studied by the deformed-base antisymmetrized molecular dynamics with the Gogny D1S force. It is found that the obtained superdeformed band members of $^{32}{\rm S}$ have considerable amount of the $^{16}{\rm O} + ^{16}{\rm O}$ component. Above the superdeformed band, we have obtained two excited rotational bands which have more prominent character of the $^{16}{\rm O} + ^{16}{\rm O}$ molecular band. These three rotational bands are regarded as a series of $^{16}{\rm O} + ^{16}{\rm O}$ molecular bands which were predicted by using the unique $^{16}{\rm O}$ -$^{16}{\rm O}$ optical potentil. As the excitation energy and principal quantum number of the relative motion increase, the $^{16}{\rm O} + ^{16}{\rm O}$ cluster structure becomes more prominent but at the same time, the band members are fragmented into several states.

Journal

  • Physical Review C

    Physical Review C 69 (5), 051304-, 2004-05-28

    American Physical Society (APS)

Citations (17)*help

See more

Report a problem

Back to top