-
- Dominique Bakry
- Université Paul Sabatier, Toulouse, France
-
- Michel Ledoux
- Université Paul Sabatier, Toulouse, France
説明
<jats:p>We present a finite dimensional version of the logarithmic Sobolev inequality for heat kernel measures of non-negatively curved diffusion operators that contains and improves upon the Li-Yau parabolic inequality. This new inequality is of interest already in Euclidean space for the standard Gaussian measure. The result may also be seen as an extended version of the semigroup commutation properties under curvature conditions. It may be applied to reach optimal Euclidean logarithmic Sobolev inequalities in this setting. Exponential Laplace differential inequalities through the Herbst argument furthermore yield diameter bounds and dimensional estimates on the heat kernel volume of balls.</jats:p>
収録刊行物
-
- Revista Matemática Iberoamericana
-
Revista Matemática Iberoamericana 22 (2), 683-702, 2006-08-31
European Mathematical Society - EMS - Publishing House GmbH
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1363670320754230016
-
- DOI
- 10.4171/rmi/470
-
- ISSN
- 22350616
- 02132230
-
- データソース種別
-
- Crossref