-
- Filipp Furche
- University of California, Irvine Department of Chemistry Irvine CA USA
-
- Reinhart Ahlrichs
- Institute of Physical Chemistry Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
-
- Christof Hättig
- Lehrstuhl für Theoretische Chemie Ruhr‐Universität Bochum Bochum Germany
-
- Wim Klopper
- Institute of Physical Chemistry Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
-
- Marek Sierka
- Otto‐Schott‐Institut für Materialforschung Friedrich‐Schiller‐Universität Jena Jena Germany
-
- Florian Weigend
- Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
この論文をさがす
説明
<jats:p>Turbomole is a highly optimized software package for large‐scale quantum chemical simulations of molecules, clusters, and periodic solids. Turbomole uses <jats:styled-content style="fixed-case">G</jats:styled-content>aussian basis sets and specializes on predictive electronic structure methods with excellent cost to performance characteristics, such as (time‐dependent) density functional theory (<jats:styled-content style="fixed-case">TDDFT</jats:styled-content>), second‐order <jats:styled-content style="fixed-case">M</jats:styled-content>øller–<jats:styled-content style="fixed-case">P</jats:styled-content>lesset theory, and explicitly correlated coupled cluster (<jats:styled-content style="fixed-case">CC</jats:styled-content>) methods. These methods are combined with ultraefficient and numerically stable algorithms such as integral‐direct and Laplace transform methods, resolution‐of‐the‐identity, pair natural orbitals, fast multipole, and low‐order scaling techniques. Apart from energies and structures, a variety of optical, electric, and magnetic properties are accessible from analytical energy derivatives for electronic ground and excited states. Recent additions include post‐<jats:styled-content style="fixed-case">K</jats:styled-content>ohn–<jats:styled-content style="fixed-case">S</jats:styled-content>ham calculations within the random phase approximation, periodic calculations, spin–orbit couplings, explicitly correlated <jats:styled-content style="fixed-case">CC</jats:styled-content> singles doubles and perturbative triples methods, <jats:styled-content style="fixed-case">CC</jats:styled-content> singles doubles excitation energies, and nonadiabatic molecular dynamics simulations using <jats:styled-content style="fixed-case">TDDFT</jats:styled-content>. A dedicated graphical user interface and a user support network are also available.</jats:p><jats:p>This article is categorized under: <jats:list list-type="explicit-label"> <jats:list-item><jats:p>Software > Quantum Chemistry</jats:p></jats:list-item> </jats:list></jats:p>
収録刊行物
-
- WIREs Computational Molecular Science
-
WIREs Computational Molecular Science 4 (2), 91-100, 2013-07-08
Wiley