A <i>myo</i>‐inositol‐1‐phosphate synthase gene, <i>Ib<scp>MIPS</scp>1</i>, enhances salt and drought tolerance and stem nematode resistance in transgenic sweet potato

  • Hong Zhai
    Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization Ministry of Education China Agricultural University Beijing China
  • Feibing Wang
    Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization Ministry of Education China Agricultural University Beijing China
  • Zengzhi Si
    Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization Ministry of Education China Agricultural University Beijing China
  • Jinxi Huo
    Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization Ministry of Education China Agricultural University Beijing China
  • Lei Xing
    Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization Ministry of Education China Agricultural University Beijing China
  • Yanyan An
    Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization Ministry of Education China Agricultural University Beijing China
  • Shaozhen He
    Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization Ministry of Education China Agricultural University Beijing China
  • Qingchang Liu
    Beijing Key Laboratory of Crop Genetic Improvement/Laboratory of Crop Heterosis and Utilization Ministry of Education China Agricultural University Beijing China

説明

<jats:title>Summary</jats:title><jats:p><jats:italic>Myo</jats:italic>‐inositol‐1‐phosphate synthase (<jats:styled-content style="fixed-case">MIPS</jats:styled-content>) is a key rate limiting enzyme in <jats:italic>myo</jats:italic>‐inositol biosynthesis. The <jats:italic><jats:styled-content style="fixed-case">MIPS</jats:styled-content></jats:italic> gene has been shown to improve tolerance to abiotic stresses in several plant species. However, its role in resistance to biotic stresses has not been reported. In this study, we found that expression of the sweet potato <jats:italic>Ib<jats:styled-content style="fixed-case">MIPS</jats:styled-content>1</jats:italic> gene was induced by NaCl, polyethylene glycol (<jats:styled-content style="fixed-case">PEG</jats:styled-content>), abscisic acid (<jats:styled-content style="fixed-case">ABA</jats:styled-content>) and stem nematodes. Its overexpression significantly enhanced stem nematode resistance as well as salt and drought tolerance in transgenic sweet potato under field conditions. Transcriptome and real‐time quantitative <jats:styled-content style="fixed-case">PCR</jats:styled-content> analyses showed that overexpression of <jats:italic>Ib<jats:styled-content style="fixed-case">MIPS</jats:styled-content>1</jats:italic> up‐regulated the genes involved in inositol biosynthesis, phosphatidylinositol (<jats:styled-content style="fixed-case">PI</jats:styled-content>) and <jats:styled-content style="fixed-case">ABA</jats:styled-content> signalling pathways, stress responses, photosynthesis and <jats:styled-content style="fixed-case">ROS</jats:styled-content>‐scavenging system under salt, drought and stem nematode stresses. Inositol, inositol‐1,4,5‐trisphosphate (<jats:styled-content style="fixed-case">IP</jats:styled-content><jats:sub>3</jats:sub>), phosphatidic acid (<jats:styled-content style="fixed-case">PA</jats:styled-content>), Ca<jats:sup>2+</jats:sup>, <jats:styled-content style="fixed-case">ABA</jats:styled-content>, K<jats:sup>+</jats:sup>, proline and trehalose content was significantly increased, whereas malonaldehyde (<jats:styled-content style="fixed-case">MDA</jats:styled-content>), Na<jats:sup>+</jats:sup> and H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> content was significantly decreased in the transgenic plants under salt and drought stresses. After stem nematode infection, the significant increase of inositol, <jats:styled-content style="fixed-case">IP</jats:styled-content><jats:sub>3</jats:sub>, <jats:styled-content style="fixed-case">PA</jats:styled-content>, Ca<jats:sup>2+</jats:sup>, <jats:styled-content style="fixed-case">ABA</jats:styled-content>, callose and lignin content and significant reduction of <jats:styled-content style="fixed-case">MDA</jats:styled-content> content were found, and a rapid increase of H<jats:sub>2</jats:sub>O<jats:sub>2</jats:sub> levels was observed, peaked at 1 to 2 days and thereafter declined in the transgenic plants. This study indicates that the <jats:italic>Ib<jats:styled-content style="fixed-case">MIPS</jats:styled-content>1</jats:italic> gene has the potential to be used to improve the resistance to biotic and abiotic stresses in plants.</jats:p>

収録刊行物

被引用文献 (1)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ