The impact of metabolism on stable isotope dynamics: a theoretical framework

  • Laure Pecquerie
    Ecology, Evolution and Marine Biology Department, University of California Santa Barbara, Santa Barbara, CA 93106-9620, USA
  • Roger M. Nisbet
    Ecology, Evolution and Marine Biology Department, University of California Santa Barbara, Santa Barbara, CA 93106-9620, USA
  • Ronan Fablet
    Telecom Bretagne/LabSTICC, Technopôle Brest-Iroise – CS 83818, 29238 Brest Cedex 3, France
  • Anne Lorrain
    IRD/LEMAR, Centre IRD de Brest, BP 70, 29280 Plouzané, France
  • Sebastiaan A. L. M. Kooijman
    Vrije Universiteit, Department of Theoretical Biology, de Boelelaan 1087, 1081, Amsterdam, The Netherlands

Abstract

<jats:p> Stable isotope analysis is a powerful tool used for reconstructing individual life histories, identifying food-web structures and tracking flow of elemental matter through ecosystems. The mechanisms determining isotopic incorporation rates and discrimination factors are, however, poorly understood which hinders a reliable interpretation of field data when no experimental data are available. Here, we extend dynamic energy budget (DEB) theory with a limited set of new assumptions and rules in order to study the impact of metabolism on stable isotope dynamics in a mechanistic way. We calculate fluxes of stable isotopes within an organism by following fluxes of molecules involved in a limited number of macrochemical reactions: assimilation, growth but also structure turnover that is here explicitly treated. Two mechanisms are involved in the discrimination of isotopes: (i) selection of <jats:italic>molecules</jats:italic> occurs at the partitioning of assimilation, growth and turnover into anabolic and catabolic sub-fluxes and (ii) reshuffling of <jats:italic>atoms</jats:italic> occurs during transformations. Such a framework allows for isotopic routing which is known as a key, but poorly studied, mechanism. As DEB theory specifies the impact of environmental conditions and individual state on molecule fluxes, we discuss how scenario analysis within this framework could help reveal common mechanisms across taxa. </jats:p>

Journal

Citations (3)*help

See more

Report a problem

Back to top