説明
<p>We analyze the behavior of the holonomic rank in families of holonomic systems over complex algebraic varieties by providing homological criteria for rank-jumps in this general setting. Then we investigate rank-jump behavior for hypergeometric systems <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Subscript upper A Baseline left-parenthesis beta right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>H</mml:mi> <mml:mi>A</mml:mi> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mi>β<!-- β --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">H_A(\beta )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> arising from a <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="d times n"> <mml:semantics> <mml:mrow> <mml:mi>d</mml:mi> <mml:mo>×<!-- × --></mml:mo> <mml:mi>n</mml:mi> </mml:mrow> <mml:annotation encoding="application/x-tex">d \times n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> integer matrix <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper A"> <mml:semantics> <mml:mi>A</mml:mi> <mml:annotation encoding="application/x-tex">A</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and a parameter <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="beta element-of double-struck upper C Superscript d"> <mml:semantics> <mml:mrow> <mml:mi>β<!-- β --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">C</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">\beta \in \mathbb {C}^d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. To do so we introduce an Euler–Koszul functor for hypergeometric families over <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper C Superscript d"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">C</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:annotation encoding="application/x-tex">\mathbb {C}^d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, whose homology generalizes the notion of a hypergeometric system, and we prove a homology isomorphism with our general homological construction above. We show that a parameter <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="beta element-of double-struck upper C Superscript d"> <mml:semantics> <mml:mrow> <mml:mi>β<!-- β --></mml:mi> <mml:mo>∈<!-- ∈ --></mml:mo> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">C</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> </mml:mrow> <mml:annotation encoding="application/x-tex">\beta \in \mathbb {C}^d</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is rank-jumping for <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="upper H Subscript upper A Baseline left-parenthesis beta right-parenthesis"> <mml:semantics> <mml:mrow> <mml:msub> <mml:mi>H</mml:mi> <mml:mi>A</mml:mi> </mml:msub> <mml:mo stretchy="false">(</mml:mo> <mml:mi>β<!-- β --></mml:mi> <mml:mo stretchy="false">)</mml:mo> </mml:mrow> <mml:annotation encoding="application/x-tex">H_A(\beta )</mml:annotation> </mml:semantics> </mml:math> </inline-formula> if and only if <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="beta"> <mml:semantics> <mml:mi>β<!-- β --></mml:mi> <mml:annotation encoding="application/x-tex">\beta</mml:annotation> </mml:semantics> </mml:math> </inline-formula> lies in the Zariski closure of the set of <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="double-struck upper C Superscript d"> <mml:semantics> <mml:msup> <mml:mrow class="MJX-TeXAtom-ORD"> <mml:mi mathvariant="double-struck">C</mml:mi> </mml:mrow> <mml:mi>d</mml:mi> </mml:msup> <mml:annotation encoding="application/x-tex">\mathbb {C}^d</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-graded degrees <inline-formula content-type="math/mathml"> <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" alttext="alpha"> < ...
収録刊行物
-
- Journal of the American Mathematical Society
-
Journal of the American Mathematical Society 18 (4), 919-941, 2005-05-25
American Mathematical Society (AMS)