- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Automatic Translation feature is available on CiNii Labs
- Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Heavy-Chain Complementarity-Determining Regions Determine Conformation Selectivity of Anti-Aβ Antibodies
Search this article
Description
<jats:p>Background/Aims: Amyloid-β (Aβ) protofibrils are neurotoxic soluble intermediates in the Aβ aggregation process eventually forming senile plaques in Alzheimer’s disease. This Aβ species is a potential biomarker for Alzheimer’s disease and also a promising target for immunotherapy. In this study, we investigated the characteristics of conformation-dependent Aβ antibodies specific for Aβ protofibrils. Methods: Mice were immunized with Aβ protofibrils to generate hybridomas producing Aβ-specific monoclonal antibodies. Binding of antibodies to different Aβ conformations was investigated with inhibition ELISA. The antibodies’ complementarity-determining region (CDR) sequences were determined and compared. Results: A majority of the antibodies were of the IgM class, all selectively binding to aggregated Aβ. Two IgG antibodies were generated: one with selective affinity for Aβ protofibrils and the other bound Aβ in all conformations. A high degree of similarity between the heavy-chain CDRs of the conformation-dependent antibodies was found, and all high-affinity Aβ antibodies displayed a high degree of sequence similarity in the light-chain CDRs. Conclusion: Sequence similarity in the heavy-chain CDRs is associated with conformation selectivity of the antibodies, while sequence similarity in the light-chain CDRs correlates with the affinity for Aβ.</jats:p>
Journal
-
- Neurodegenerative Diseases
-
Neurodegenerative Diseases 8 (3), 117-123, 2010-08-13
S. Karger AG
- Tweet
Details 詳細情報について
-
- CRID
- 1364233269531921024
-
- ISSN
- 16602862
- 16602854
-
- Data Source
-
- Crossref