Mutations in Turnip mosaic virus genomes that have adapted to Raphanus sativus

  • Zhongyang Tan
    Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga 840-8502, Japan
  • Adrian J. Gibbs
    School of Botany and Zoology, Australian National University, Canberra, ACT 0200, Australia
  • Yasuhiro Tomitaka
    Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga 840-8502, Japan
  • Flora Sánchez
    Departamento de Biotecnologia, INIA, Autopista A-6 km 7, 28040 Madrid, Spain
  • Fernando Ponz
    Departamento de Biotecnologia, INIA, Autopista A-6 km 7, 28040 Madrid, Spain
  • Kazusato Ohshima
    Laboratory of Plant Virology, Faculty of Agriculture, Saga University, Saga 840-8502, Japan

説明

<jats:p>The genetic basis for virulence in potyviruses is largely unknown. Earlier studies showed that there are two host types of<jats:italic>Turnip mosaic virus</jats:italic>(TuMV); the<jats:italic>Brassica</jats:italic>/<jats:italic>Raphanus</jats:italic>(BR)-host type infects both<jats:italic>Brassica</jats:italic>and<jats:italic>Raphanus</jats:italic>systemically, whereas the<jats:italic>Brassica</jats:italic>(B)-host type infects<jats:italic>Brassica</jats:italic>fully and systemically, but not<jats:italic>Raphanus</jats:italic>. The genetic basis of this difference has been explored by using the progeny of an infectious clone, p35Tunos; this clone is derived from the UK1 isolate, which is of the B-host type, but rarely infects<jats:italic>Raphanus</jats:italic>systemically and then only asymptomatically. Two inocula from one such infection were adapted to<jats:italic>Raphanus</jats:italic>by passaging, during which the infectivity and concentration of the virions of successive infections increased. The variant genomes in the samples, 16 in total, were sequenced fully. Four of the 39 nucleotide substitutions that were detected among the<jats:italic>Raphanus sativus</jats:italic>-adapted variant genomes were probably crucial for adaptation, as they were found in several variants with independent passage histories. These four were found in the protein 1 (P1), protein 3 (P3), cylindrical inclusion protein (CI) and genome-liked viral protein (VPg) genes. One of four ‘parallel evolution’ substitutions,<jats:sub>3430</jats:sub>G→A, resulted in a<jats:sub>1100</jats:sub>Met→Ile amino acid change in the C terminus of P3. It seems likely that this site is important in the initial stages of adaptation to<jats:italic>R. sativus</jats:italic>. Other independent substitutions were mostly found in the P3, CI and VPg genes.</jats:p>

収録刊行物

被引用文献 (9)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ