- 【Updated on May 12, 2025】 Integration of CiNii Dissertations and CiNii Books into CiNii Research
- Trial version of CiNii Research Knowledge Graph Search feature is available on CiNii Labs
- 【Updated on June 30, 2025】Suspension and deletion of data provided by Nikkei BP
- Regarding the recording of “Research Data” and “Evidence Data”
Formation and disintegration of the Antarctic ice sheet
Search this article
Description
<jats:p>A model of the Antarctic ice sheet has been used to simulate the ice sheet in warmer climates, in order to investigate what kind of ice-sheet geometries one can reasonably expect under what kind of climatic conditions and to discover which physical mechanisms may be involved to explain them. The results of these experiments reveal the considerable stability of; in particular, the East Antarctic ice sheet. It would require a temperature rise of between 17 and 20 K above present levels to remove this ice sheet from the subglacial basins in the interior of the continent and of 25 K to melt down the Antarctic ice sheet completely. For a temperature rise below 5 K, the model actually predicts a larger Antarctic ice sheet than today as a result of increased snowfall, whereas the west Antarctic ice sheet was round not to survive temperatures more than 8–10 K above present values. Furthermore, basal temperature conditions in these experiments point to the problems involved in raising the base of the ice sheet to the pressure-melting point over the large areas necessary to consider the possibility of sliding instability. These results bear on a lively debate regarding the late Cenozoic glacial history of Antarctica. Particularly, based on these findings, it is difficult to reconcile a highly variable East Antarctic ice sheet until the Pliocene with modest warming recorded in, for instance, the deep-sea records for the late Neogene.</jats:p>
Journal
-
- Annals of Glaciology
-
Annals of Glaciology 20 336-340, 1994
International Glaciological Society
- Tweet
Keywords
Details 詳細情報について
-
- CRID
- 1364233269979549952
-
- ISSN
- 17275644
- 02603055
-
- Data Source
-
- Crossref