The Pauli matrices in <i>n</i> dimensions and finest gradings of simple Lie algebras of type <i>A</i> <i>n</i>−1
-
- J. Patera
- Centre de Recherches Mathématiques, Université de Montréal, Montréal, Québec, Canada and Department of Mathematics, Ohio State University, Columbus, Ohio 43210
-
- H. Zassenhaus
- Centre de Recherches Mathématiques, Université de Montréal, Montréal, Québec, Canada and Department of Mathematics, Ohio State University, Columbus, Ohio 43210
この論文をさがす
説明
<jats:p>Properties of the Lie algebra gl(n,C) are described for a basis which is a generalization of the 2×2 Pauli matrices. The 3×3 case is described in detail. The remarkable properties of that basis are the grading of the Lie algebra it offers (each grading subspace is one dimensional) and the matrix group it generates [it is a finite group with the center of SL(n,C) as its commutator group].</jats:p>
収録刊行物
-
- Journal of Mathematical Physics
-
Journal of Mathematical Physics 29 (3), 665-673, 1988-03-01
AIP Publishing
- Tweet
詳細情報 詳細情報について
-
- CRID
- 1364233270547213056
-
- DOI
- 10.1063/1.528006
-
- ISSN
- 10897658
- 00222488
-
- データソース種別
-
- Crossref