Development of Low-Energy Methods for Preparing Food Nano-emulsions

  • Miyanoshita Michitaka
    Department of Applied Biological Science, Faculty of Agriculture, Kagawa University
  • Hashida Chitose
    Department of Applied Biological Science, Faculty of Agriculture, Kagawa University
  • Ikeda Shinya
    Department of Applied Biological Science, Faculty of Agriculture, Kagawa University
  • Gohtani Shoichi
    Department of Applied Biological Science, Faculty of Agriculture, Kagawa University

この論文をさがす

抄録

The aim of this work was to investigate the effect of sucrose on the phase behavior of vegetable oil/polyoxyethylene sorbitan monooleate (MOPS, Tween 80) and decaglycerol monolaurilester (DGML)/aqueous solution systems to establish low-energy emulsification methods for preparing nano-emulsions suitable for food uses. Phase diagrams were constructed to elucidate the optimal process for preparing the nano-emulsions. It was found that nano-emulsions were obtained when the composition was altered to either cross the sponge phase (L3) or lamellar phase (La) in the vegetable oil/MOPS/aqueous solution system or vegetable oil/DGML/aqueous solution system, respectively. The average droplet sizes in the former and latter emulsions were 0.203 μm and 0.165 μm, respectively. The addition of sucrose changed the hexagonal phase in the vegetable oil/MOPS/aqueous solution system into the sponge phase. As a result, the sponge region in the vegetable oil/MOPS/sucrose aqueous solution system occupied a larger area than that in the vegetable oil/MOPS/water system. In contrast, sucrose had no effect on the area of the La region in the vegetable oil/DGML/aqueous solution system. However, the addition of sucrose decreased the amount of emulsifier required to prepare nano-emulsions in both the vegetable oil/MOPS and DGML/aqueous solution systems. Sucrose was confirmed to facilitate the preparation of nano-emulsions in both systems.

収録刊行物

被引用文献 (4)*注記

もっと見る

参考文献 (22)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ