A TWO-STEP PRIMAL-DUAL INTERIOR POINT METHOD FOR NONLINEAR SEMIDEFINITE PROGRAMMING PROBLEMS AND ITS SUPERLINEAR CONVERGENCE
-
- Yamakawa Yuya
- Kyoto University
-
- Yamashita Nobuo
- Kyoto University
この論文をさがす
説明
<p>In this paper, we propose a primal-dual interior point method for nonlinear semidefinite programming problems and show its superlinear convergence. This method is based on generalized shifted barrier Karush-Kuhn-Tucker (KKT) conditions, which include barrier KKT conditions and shifted barrier KKT conditions as a special case. This method solves two Newton equations in a single iteration to guarantee superlinear convergence. We replace the coefficient matrix of the second Newton equation with that of the first to reduce the computational time of the single iteration. We show that the superlinear convergence of the proposed method with the replacement under the usual assumptions.</p>
収録刊行物
-
- 日本オペレーションズ・リサーチ学会論文誌
-
日本オペレーションズ・リサーチ学会論文誌 57 (3-4), 105-127, 2014
公益社団法人 日本オペレーションズ・リサーチ学会
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390001204109952512
-
- NII論文ID
- 130005700634
-
- NII書誌ID
- AA00703935
-
- ISSN
- 21888299
- 04534514
-
- NDL書誌ID
- 026077875
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- NDLサーチ
- Crossref
- CiNii Articles
- OpenAIRE
-
- 抄録ライセンスフラグ
- 使用不可