Mechanism of Ambipolar Field-Effect Carrier Injections in One-Dimensional Mott Insulators
-
- Yonemitsu Kenji
- Institute for Molecular Science Graduate University for Advanced Studies
この論文をさがす
説明
To clarify the mechanism of recently reported, ambipolar carrier injections into quasi-one-dimensional Mott insulators on which field-effect transistors are fabricated, we employ the one-dimensional Hubbard model attached to a tight-binding model for source and drain electrodes. To take account of the formation of Schottky barriers, we add scalar and vector potentials, which satisfy the Poisson equation with boundary values depending on the drain voltage, the gate bias, and the work-function difference. The current–voltage characteristics are obtained by solving the time-dependent Schrödinger equation in the unrestricted Hartree–Fock approximation. Its validity is discussed with the help of the Lanczos method applied to small systems. We find generally ambipolar carrier injections in Mott insulators even if the work function of the crystal is quite different from that of the electrodes. They result from balancing the correlation effect with the barrier effect. For the gate-bias polarity with higher Schottky barriers, the correlation effect is weakened accordingly, owing to collective transport in the one-dimensional correlated electron systems.
収録刊行物
-
- Journal of the Physical Society of Japan
-
Journal of the Physical Society of Japan 74 (9), 2544-2553, 2005
一般社団法人 日本物理学会
- Tweet
キーワード
詳細情報 詳細情報について
-
- CRID
- 1390001204188218752
-
- NII論文ID
- 110002245742
- 130004539393
- 210000105646
-
- NII書誌ID
- AA00704814
-
- BIBCODE
- 2005JPSJ...74.2544Y
-
- ISSN
- 13474073
- 00319015
-
- NDL書誌ID
- 7439569
-
- 本文言語コード
- en
-
- データソース種別
-
- JaLC
- NDL
- Crossref
- CiNii Articles
-
- 抄録ライセンスフラグ
- 使用不可