Hydrogen-Promoted Grain Boundary Embrittlement and Vacancy Activity in Metals: Insights from Ab Initio Total Energy Calculatons

書誌事項

タイトル別名
  • Hydrogen-Promoted Grain Boundary Embrittlement and Vacancy Activity in Metals: Insights from <I>Ab Initio</I> Total Energy Calculatons

この論文をさがす

抄録

The rapid diffusion of H in metals permits an easy segregation to the grain boundary and an easy trapping to the vacancy. H-induced intergranular embrittlement in metals such as Fe and Ni is generally a result of coalition of segregated H and other embrittling impurities at the grain boundary. Ab initio total energy calculations based on the density functional theory have shown that H alone can also weaken the cohesion across the grain boundary. The stronger binding of H with a free surface than with a grain boundary, which results in grain boundary embrittlement according to the Rice–Wang theory, can be ascribed to its monovalency. New tensile experiments point to a H-enhanced vacancy contribution to the increased susceptibility of steel to H embrittlement. Ab initio density functional calculations on the energetics of interstitial H, vacancy, and H-monovacancy complexes (VacHn) in bcc Fe have shown that the predominant complex under ambient condition of H pressure is VacH2, not VacH6 as previously suggested by effective-medium theory calculations. The linear structure of VacH2 clusters, a consequence of repulsion between negatively charged H atoms, facilitates the formation of linear and tabular vacancy clusters and such anisotropic clusters may lead to void or crack nucleation on the cleavage planes. On the other hand, the H-induced increase of vacancy cluster formation energy is a support of the experimentally observed enhancement of dislocation mobility in the presence of H, which, through the mechanism of H-enhanced localized plasticity, makes fracture easier.

収録刊行物

被引用文献 (2)*注記

もっと見る

参考文献 (67)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ