ITER Relevant High Heat Flux Testing on Plasma Facing Surfaces

Search this article

Abstract

The current ITER design employs beryllium, carbon fiber reinforced composite and tungsten as plasma facing materials. Since these materials are exposed to high heat fluxes during the operation, it is essential to perform high heat flux tests for R&D of ITER components. Static heat loads corresponding to cycling loads during normal operation, are estimated to be up to 20 MW/m2 in the divertor targets and around 0.5 MW/m2 at the first wall in ITER. For the static high heat flux testing, tests in electron beam facilities, particle beam facilities, IR heater and in-pile tests have been performed. Another type, more critical heat loads, which have high power densities and short durations, corresponding to transient events, i.e. plasma disruption, vertical displacement events (VDEs) and edge localized modes (ELMs) deliver considerable heat flux onto the plasma facing materials. For this purpose, tests in electron beam (short pulses), plasma gun and high power laser facilities have been carried out. The present work summarizes the features of these facilities and recent experimental results as well as the current selection of ITER plasma facing components.

Journal

  • MATERIALS TRANSACTIONS

    MATERIALS TRANSACTIONS 46 (3), 412-424, 2005

    The Japan Institute of Metals and Materials

Citations (5)*help

See more

References(175)*help

See more

Details 詳細情報について

Report a problem

Back to top