Characterization of Metal Ions in Coordinating Solvent Mixtures by Means of Raman Spectroscopy

DOI PDF Web Site Web Site Web Site View 1 Remaining Hide 3 Citations 83 References

Search this article

Abstract

Titration Raman spectroscopy has been developed for studying the solvation structure of metal ions in solution. The method affords us the solvation number, and the value thus obtained in neat solvents is in good agreement with that determined by EXAFS. The method is then applied to solvent mixtures, and the individual solvation number for each solvent is extracted. In a solvent mixture of N,N-dimethylformamide (DMF) and N,N,N′,N′-tetramethylurea (TMU), the metal ion prefers DMF to TMU, which is ascribed to the solvation steric effect. The same applies also for the solvent mixture of N,N-dimethylpropionamide (DMPA) and DMF. However, unlike TMU, DMPA changes its conformation from the planar cis to non-planar staggered upon solvation to the metal ion. The enthalpy for the conformational change of DMPA is positive in the bulk, while it is significantly negative in the coordination sphere of the manganese(II) ion. Here, we briefly describe the procedure of measurements and analyses for the titration Raman spectroscopy, and review the solvation structure of the alkaline earth, first transition metal(II) and lanthanide(III) ions in some solvent mixtures in view of solvation steric effect.

Journal

  • Analytical Sciences

    Analytical Sciences 20 (3), 415-421, 2004

    The Japan Society for Analytical Chemistry

Citations (3)*help

See more

References(83)*help

See more

Details 詳細情報について

Report a problem

Back to top