Deviations of Capacitive and Inductive Loops in the Electrochemical Impedance of a Dissolving Iron Electrode.

DOI PDF Web Site Web Site Web Site View 1 Remaining Hide 5 Citations 23 References
  • ITAGAKI Masayuki
    Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
  • TAYA Akihiro
    Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
  • WATANABE Kunihiro
    Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science
  • NODA Kazuhiko
    Corrosion Research Group, National Institute for Materials Science

Search this article

Abstract

The electrochemical impedance of an iron electrode often shows the capacitive and inductive loops on the complex plane. The capacitive loop originates from the time constant of the charge transfer resistance and the electric double layer capacitance. The inductive loop is explained by Faradaic processes involving the reaction intermediate. In some cases, these loops deviate from a true semicircle. In this paper, the origins and curve-fitting methods for the deviated loops of electrochemical impedance are discussed. The constant phase element (CPE) was used to present the deviation of the capacitive loop instead of electric double layer capacitance. The reaction rate constants, which are a function of the frequency, are proposed for the Faradaic impedance to present the deviated inductive loop.

Journal

  • Analytical Sciences

    Analytical Sciences 18 (6), 641-644, 2002

    The Japan Society for Analytical Chemistry

Citations (5)*help

See more

References(23)*help

See more

Details 詳細情報について

Report a problem

Back to top