Measuring Exposed Magnetic Fields of Welders in Working Time

この論文をさがす

説明

The assessment of the occupational electromagnetic field exposure of welders is of great importance, especially in shielded-arc welding, which uses relatively high electric currents of up to several hundred amperes. In the present study, we measured the magnetic field exposure level of welders in the course of working. A 3-axis Hall magnetometer was attached to a subject’s wrist in order to place the sensor probe at the closest position to the magnetic source (a cable from the current source). Data was acquired every 5 s from the beginning of the work time. The maximum exposed field was 0.35-3.35 mT (Mean ± SD: 1.55 ± 0.93 mT, N=17) and the average value per day was 0.04-0.12 mT (Mean ± SD: 0.07 ± 0.02 mT, N=17). We also conducted a finite element method-based analysis of human hand tissue for the electromagnetic field dosimetry. In addition, the magnetic field associated with grinders, an air hammer, and a drill using electromagnetic anchorage were measured; however, the magnetic fields were much lower than those generated in the welding process. These results agreed well with the results of the electromagnetic field dosimetry (1.49 mT at the wrist position), and the calculated eddy current (4.28 mA/m2) was much lower than the well-known guideline thresholds for electrical nerve or muscular stimulation.<br>

収録刊行物

参考文献 (7)*注記

もっと見る

詳細情報 詳細情報について

問題の指摘

ページトップへ