[Updated on Apr. 18] Integration of CiNii Articles into CiNii Research

Routing, Modulation Level, Spectrum and Transceiver Assignment in Elastic Optical Networks

  • YANG Mingcong
    Graduate School of Systems and Information Engineering, University of Tsukuba
  • GUO Kai
    Graduate School of Systems and Information Engineering, University of Tsukuba
  • ZHANG Yongbing
    Graduate School of Systems and Information Engineering, University of Tsukuba
  • JI Yusheng
    National Institute of Informatics

Abstract

<p>The elastic optical network (EON) is a promising new optical technology that uses spectrum resources much more efficiently than does traditional wavelength division multiplexing (WDM). This paper focuses on the routing, modulation level, spectrum and transceiver allocation (RMSTA) problems of the EON. In contrast to previous works that consider only the routing and spectrum allocation (RSA) or routing, modulation level and spectrum allocation (RMSA) problems, we additionally consider the transceiver allocation problem. Because transceivers can be used to regenerate signals (by connecting two transceivers back-to-back) along a transmission path, different regeneration sites on a transmission path result in different spectrum and transceiver usage. Thus, the RMSTA problem is both more complex and more challenging than are the RSA and RMSA problems. To address this problem, we first propose an integer linear programming (ILP) model whose objective is to optimize the balance between spectrum usage and transceiver usage by tuning a weighting coefficient to minimize the cost of network operations. Then, we propose a novel virtual network-based heuristic algorithm to solve the problem and present the results of experiments on representative network topologies. The results verify that, compared to previous works, the proposed algorithm can significantly reduce both resource consumption and time complexity.</p>

Journal

Citations (1)*help

See more

References(31)*help

See more

Related Articles

See more

Related Data

See more

Related Books

See more

Related Dissertations

See more

Related Projects

See more

Related Products

See more

Details

Report a problem

Back to top