Improvement in Solution Search Performance of Deterministic PSO Using a Golden Angle

DOI 被引用文献1件 参考文献3件 オープンアクセス

説明

A particle swarm optimization (PSO) is one of the powerful systems for solving global optimization problems. The searching ability of such PSO depends on the inertia weight coefficient, and the acceleration coefficients. Since the acceleration coefficients are multiplied by a random vector, the system can be regarded as a stochastic system. In order to analyze the dynamics rigorously, we pay attention to a deterministic PSO, which does not contain any stochastic factors. On the other hand, the standard PSO may diverge depending on the random parameter. Because of this divergence property, the standard PSO has high performance compared with the deterministic PSO. Since the deterministic PSO does not have stochastic factors, the diversity of the particles of deterministic PSO is lost. Therefore its searching ability is worse. In order to give diversity to the deterministic PSO, the golden angle is applied to the rotation angle parameter of the deterministic PSO. We confirm the performance of the searching ability of the proposed PSO.

収録刊行物

  • 信号処理

    信号処理 16 (4), 299-302, 2012

    信号処理学会

被引用文献 (1)*注記

もっと見る

参考文献 (3)*注記

もっと見る

関連プロジェクト

もっと見る

詳細情報 詳細情報について

  • CRID
    1390001204464905600
  • NII論文ID
    130004457018
  • DOI
    10.2299/jsp.16.299
  • ISSN
    18801013
    13426230
  • 本文言語コード
    en
  • 資料種別
    journal article
  • データソース種別
    • JaLC
    • Crossref
    • CiNii Articles
    • KAKEN
    • OpenAIRE
  • 抄録ライセンスフラグ
    使用不可

問題の指摘

ページトップへ