Uncertainty Quantification of Transonic Nozzle Flow by Polynomial Chaos Expansion

  • MIYAJI Koji
    連絡先著者(Corresponding author):miyaji@ynu.ac.jp 横浜国立大学大学院工学研究院
  • UENO Tota
    横浜国立大学大学院工学府
  • KAWAMURA Yasumi
    横浜国立大学大学院工学研究院

Bibliographic Information

Other Title
  • 多項式カオス展開を用いた遷音速ノズル流れの不確定性解析の研究
  • タコウシキ カオス テンカイ オ モチイタ センオンソク ノズル ナガレ ノ フカクテイセイ カイセキ ノ ケンキュウ

Search this article

Description

This study investigates the performance of an intrusive polynomial chaos expansion (PCE) method in the uncertainty quantification (UQ) of CFD. Quasi one-dimensional flow of a transonic nozzle with an uncertainty in the exit-pressure condition is discussed. Two major numerical techniques in our intrusive PCE are Roe-variable transformation and the multi-element (ME) PCE for clear implementations and improved accuracies of the UQ code for the case with a discontinuity (shock wave). The Roe's flux difference splitting scheme for the augmented equations has a clear advantage in resolutions against a simpler scheme while the discontinuity in the stochastic space is not properly treated by the polynomial approximation. The ME-PCE has been shown quite effective to simulate a complex stochastic response. The results are compared with Monte Carlo simulations and the reliability of the developed method is verified.

Journal

Related Projects

See more

Details 詳細情報について

Report a problem

Back to top